Cargando…

Age and growth of Palaeoloxodon huaihoensis from Penghu Channel, Taiwan: significance of their age distribution based on fossils

Dental material attributed to Palaeoloxodon huaihoensis from the Middle to Late Pleistocene were recovered over decades from the Penghu Channel during commercial fisheries activities. The National Museum of Nature Science (NMNS) has a collection of such dental material, which differs in size and mor...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Jia-Cih, Lin, Chien-Hsiang, Chang, Chun-Hsiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8052959/
https://www.ncbi.nlm.nih.gov/pubmed/33954049
http://dx.doi.org/10.7717/peerj.11236
Descripción
Sumario:Dental material attributed to Palaeoloxodon huaihoensis from the Middle to Late Pleistocene were recovered over decades from the Penghu Channel during commercial fisheries activities. The National Museum of Nature Science (NMNS) has a collection of such dental material, which differs in size and morphology and likely represents ontogenetic variation and growth trajectory of various age groups of P. huaihoensis. However, little is known regarding age determination. By using length of dental material, enamel thickness (ET), and plate counts, we established the method to distinguish the age of the species, which is directly derived from the extant African forest elephant Loxodonta africana. When measuring signs of allometric growth, we found that in both the upper and lower jaws, tooth width was correlated negatively with lamellar frequency but positively with ET. In the same age group, the number of lamellae was higher in P. huaihoensis than in L. africana. The reconstructed age distribution indicated no difference in the upper or lower jaw. Notably, within our sample, P. huaihoensis is skewed towards adult and older individuals with median age between 33–34.5 years and differed significantly from that of Mammuthus primigenius in the European Kraków Spadzista site. This age distribution pattern is speculated to be related to the harsh environmental conditions and intense intraspecific competition among P. huaihoensis during the last ice age.