Cargando…
Multi-level aspect based sentiment classification of Twitter data: using hybrid approach in deep learning
Social media is a vital source to produce textual data, further utilized in various research fields. It has been considered an essential foundation for organizations to get valuable data to assess the users’ thoughts and opinions on a specific topic. Text classification is a procedure to assign tags...
Autores principales: | Janjua, Sadaf Hussain, Siddiqui, Ghazanfar Farooq, Sindhu, Muddassar Azam, Rashid, Umer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053014/ https://www.ncbi.nlm.nih.gov/pubmed/33954232 http://dx.doi.org/10.7717/peerj-cs.433 |
Ejemplares similares
-
Deep learning for aspect-based sentiment analysis: a review
por: Zhu, Linan, et al.
Publicado: (2022) -
Vovel metrics—novel coupling metrics for improved software fault prediction
por: Muhammad, Rizwan, et al.
Publicado: (2021) -
A supervised scheme for aspect extraction in sentiment analysis using the hybrid feature set of word dependency relations and lemmas
por: Bhamare, Bhavana R., et al.
Publicado: (2021) -
How do sentiments affect virality on Twitter?
por: Jiménez-Zafra, Salud María, et al.
Publicado: (2021) -
Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model
por: Jiang, Xuchu, et al.
Publicado: (2022)