Cargando…
Da Cheng Qi Decoction Alleviates Cerulein-Stimulated AR42J Pancreatic Acinar Cell Injury via the JAK2/STAT3 Signaling Pathway
BACKGROUND: Acute pancreatitis (AP) is a common acute abdomen inflammation, characterized by the dysregulation of digestive enzyme production and secretion. Many studies have shown that Da Cheng Qi Decoction (DCQD) is a secure, effective prescription on AP. In this study, cerulein-stimulated AR42J c...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053057/ https://www.ncbi.nlm.nih.gov/pubmed/33927777 http://dx.doi.org/10.1155/2021/6657036 |
_version_ | 1783680041796763648 |
---|---|
author | Zhou, Zehua Chen, Ying Dong, Wenmin An, Rui Liang, Kun Wang, Xinhong |
author_facet | Zhou, Zehua Chen, Ying Dong, Wenmin An, Rui Liang, Kun Wang, Xinhong |
author_sort | Zhou, Zehua |
collection | PubMed |
description | BACKGROUND: Acute pancreatitis (AP) is a common acute abdomen inflammation, characterized by the dysregulation of digestive enzyme production and secretion. Many studies have shown that Da Cheng Qi Decoction (DCQD) is a secure, effective prescription on AP. In this study, cerulein-stimulated AR42J cells damage model was established to further explore the feasibility and underlying mechanism of DCQD as a potential inhibitor of JAK2/STAT3 pathway for the treatment of AP. METHODS: Cell viability of DCQD was measured using a cell counting Kit-8 assay. Pancreatic biochemical markers such as amylase, lipase, and C-reactive protein production were measured by assay kits, respectively. Cytokines (TNF-α, IL-6, IL-10, and IL-1β) were assayed by ELISA. Protein location and protein expression were detected by immunofluorescence staining and Western blotting, respectively. Gene expression was assessed by real-time PCR. For mechanistic analysis of the effect of DCQD on JAK2/STAT3 signaling pathway, selective JAK2 inhibitor (Fedratinib) and STAT3 inhibitor (Stattic) as well as STAT3 activator (Garcinone D) were used. RESULTS: DCQD protected cells by regulating cerulein-induced inflammation and reducing the secretion of pancreatic biochemical markers. Moreover, DCQD could not only inhibit the nuclear translocation of p-STAT3, but also decrease the mRNA expression of JAK2 and STAT3 as well as the ratio of p-JAK2/JAK2 and p-STAT3/STAT3 in protein level. Additionally, DCQD could regulate the mRNA and protein expression of JAK2/STAT3 downstream effectors, Bax and Bcl-XL. The activated effect of cerulein on JAK2/STAT3 pathway was also reversed by JAK2 inhibitor Fedratinib or STAT3 inhibitor Stattic. And the overexpression of JAK2/STAT3 pathway, via STAT3 activator Garcinone D, did exert damage on cells, which bore a resemblance to cerulein. CONCLUSION: The activation of JAK2/STAT3 pathway may play a key role in the pathogenesis of cerulein-stimulated AR42J pancreatic acinar cell injury. DCQD could improve inflammatory cytokines and cell injury, which might be mediated by suppressing the activation of JAK2/STAT3 signaling pathway. |
format | Online Article Text |
id | pubmed-8053057 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-80530572021-04-28 Da Cheng Qi Decoction Alleviates Cerulein-Stimulated AR42J Pancreatic Acinar Cell Injury via the JAK2/STAT3 Signaling Pathway Zhou, Zehua Chen, Ying Dong, Wenmin An, Rui Liang, Kun Wang, Xinhong Evid Based Complement Alternat Med Research Article BACKGROUND: Acute pancreatitis (AP) is a common acute abdomen inflammation, characterized by the dysregulation of digestive enzyme production and secretion. Many studies have shown that Da Cheng Qi Decoction (DCQD) is a secure, effective prescription on AP. In this study, cerulein-stimulated AR42J cells damage model was established to further explore the feasibility and underlying mechanism of DCQD as a potential inhibitor of JAK2/STAT3 pathway for the treatment of AP. METHODS: Cell viability of DCQD was measured using a cell counting Kit-8 assay. Pancreatic biochemical markers such as amylase, lipase, and C-reactive protein production were measured by assay kits, respectively. Cytokines (TNF-α, IL-6, IL-10, and IL-1β) were assayed by ELISA. Protein location and protein expression were detected by immunofluorescence staining and Western blotting, respectively. Gene expression was assessed by real-time PCR. For mechanistic analysis of the effect of DCQD on JAK2/STAT3 signaling pathway, selective JAK2 inhibitor (Fedratinib) and STAT3 inhibitor (Stattic) as well as STAT3 activator (Garcinone D) were used. RESULTS: DCQD protected cells by regulating cerulein-induced inflammation and reducing the secretion of pancreatic biochemical markers. Moreover, DCQD could not only inhibit the nuclear translocation of p-STAT3, but also decrease the mRNA expression of JAK2 and STAT3 as well as the ratio of p-JAK2/JAK2 and p-STAT3/STAT3 in protein level. Additionally, DCQD could regulate the mRNA and protein expression of JAK2/STAT3 downstream effectors, Bax and Bcl-XL. The activated effect of cerulein on JAK2/STAT3 pathway was also reversed by JAK2 inhibitor Fedratinib or STAT3 inhibitor Stattic. And the overexpression of JAK2/STAT3 pathway, via STAT3 activator Garcinone D, did exert damage on cells, which bore a resemblance to cerulein. CONCLUSION: The activation of JAK2/STAT3 pathway may play a key role in the pathogenesis of cerulein-stimulated AR42J pancreatic acinar cell injury. DCQD could improve inflammatory cytokines and cell injury, which might be mediated by suppressing the activation of JAK2/STAT3 signaling pathway. Hindawi 2021-04-09 /pmc/articles/PMC8053057/ /pubmed/33927777 http://dx.doi.org/10.1155/2021/6657036 Text en Copyright © 2021 Zehua Zhou et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Zhou, Zehua Chen, Ying Dong, Wenmin An, Rui Liang, Kun Wang, Xinhong Da Cheng Qi Decoction Alleviates Cerulein-Stimulated AR42J Pancreatic Acinar Cell Injury via the JAK2/STAT3 Signaling Pathway |
title | Da Cheng Qi Decoction Alleviates Cerulein-Stimulated AR42J Pancreatic Acinar Cell Injury via the JAK2/STAT3 Signaling Pathway |
title_full | Da Cheng Qi Decoction Alleviates Cerulein-Stimulated AR42J Pancreatic Acinar Cell Injury via the JAK2/STAT3 Signaling Pathway |
title_fullStr | Da Cheng Qi Decoction Alleviates Cerulein-Stimulated AR42J Pancreatic Acinar Cell Injury via the JAK2/STAT3 Signaling Pathway |
title_full_unstemmed | Da Cheng Qi Decoction Alleviates Cerulein-Stimulated AR42J Pancreatic Acinar Cell Injury via the JAK2/STAT3 Signaling Pathway |
title_short | Da Cheng Qi Decoction Alleviates Cerulein-Stimulated AR42J Pancreatic Acinar Cell Injury via the JAK2/STAT3 Signaling Pathway |
title_sort | da cheng qi decoction alleviates cerulein-stimulated ar42j pancreatic acinar cell injury via the jak2/stat3 signaling pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053057/ https://www.ncbi.nlm.nih.gov/pubmed/33927777 http://dx.doi.org/10.1155/2021/6657036 |
work_keys_str_mv | AT zhouzehua dachengqidecoctionalleviatesceruleinstimulatedar42jpancreaticacinarcellinjuryviathejak2stat3signalingpathway AT chenying dachengqidecoctionalleviatesceruleinstimulatedar42jpancreaticacinarcellinjuryviathejak2stat3signalingpathway AT dongwenmin dachengqidecoctionalleviatesceruleinstimulatedar42jpancreaticacinarcellinjuryviathejak2stat3signalingpathway AT anrui dachengqidecoctionalleviatesceruleinstimulatedar42jpancreaticacinarcellinjuryviathejak2stat3signalingpathway AT liangkun dachengqidecoctionalleviatesceruleinstimulatedar42jpancreaticacinarcellinjuryviathejak2stat3signalingpathway AT wangxinhong dachengqidecoctionalleviatesceruleinstimulatedar42jpancreaticacinarcellinjuryviathejak2stat3signalingpathway |