Cargando…
Flexible comparison of batch correction methods for single-cell RNA-seq using BatchBench
As the cost of single-cell RNA-seq experiments has decreased, an increasing number of datasets are now available. Combining newly generated and publicly accessible datasets is challenging due to non-biological signals, commonly known as batch effects. Although there are several computational methods...
Autores principales: | Chazarra-Gil, Ruben, van Dongen, Stijn, Kiselev, Vladimir Yu, Hemberg, Martin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053088/ https://www.ncbi.nlm.nih.gov/pubmed/33524142 http://dx.doi.org/10.1093/nar/gkab004 |
Ejemplares similares
-
svaseq: removing batch effects and other unwanted noise from sequencing data
por: Leek, Jeffrey T.
Publicado: (2014) -
ComBat-seq: batch effect adjustment for RNA-seq count data
por: Zhang, Yuqing, et al.
Publicado: (2020) -
Independent component analysis based gene co-expression network inference (ICAnet) to decipher functional modules for better single-cell clustering and batch integration
por: Wang, Weixu, et al.
Publicado: (2021) -
Accounting for GC-content bias reduces systematic errors and batch effects in ChIP-seq data
por: Teng, Mingxiang, et al.
Publicado: (2017) -
Flexible expressed region analysis for RNA-seq with derfinder
por: Collado-Torres, Leonardo, et al.
Publicado: (2017)