Cargando…

Induction of cytotoxic effector cells towards cholangiocellular, pancreatic, and colorectal tumor cells by activation of the immune checkpoint CD40/CD40L on dendritic cells

INTRODUCTION: Gastrointestinal (GI) malignancies, such as cholangiocarcinoma, pancreatic carcinoma, and metastatic colorectal carcinoma, have a poor prognosis and effective therapeutic approaches are still challenging. Checkpoint inhibition with PD-1 or PDL-1 antibodies revealed promising results in...

Descripción completa

Detalles Bibliográficos
Autores principales: Sadeghlar, Farsaneh, Vogt, Annabelle, Mohr, Raphael U., Mahn, Robert, van Beekum, Katrin, Kornek, Miroslaw, Weismüller, Tobias J., Branchi, Vittorio, Matthaei, Hanno, Toma, Marieta, Schmidt-Wolf, I. G. H., Kalff, Jörg C., Strassburg, Christian P., González-Carmona, Maria A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053193/
https://www.ncbi.nlm.nih.gov/pubmed/33180184
http://dx.doi.org/10.1007/s00262-020-02746-x
Descripción
Sumario:INTRODUCTION: Gastrointestinal (GI) malignancies, such as cholangiocarcinoma, pancreatic carcinoma, and metastatic colorectal carcinoma, have a poor prognosis and effective therapeutic approaches are still challenging. Checkpoint inhibition with PD-1 or PDL-1 antibodies revealed promising results in different tumor entities; however, only few patients with GI tumors can potentially benefit from PD1/PDL1 inhibiting immunotherapy. Further immunotherapeutic strategies for GI malignancies are urgently needed. The aim of this study was to demonstrate that in vitro activation of the immune checkpoint CD40/CD40L can improve DC action towards bile duct, pancreas, and colorectal carcinoma. METHODS: Human DC were isolated from buffy coats from healthy donors, pulsed with tumor lysates and then transduced with adenoviruses encoding human CD40L (Ad-hCD40L). Using transwell assays, the effects of (m)CD40L on DC immunoactivation compared to (s)CD40L were analyzed. Surface marker and cytokine/chemokine expression were measured by flow cytometry, ELISA and cytokine arrays. Capacity of Ad-hCD40L-transduced DC to induce tumor-specific effector cells was tested using MTT proliferation assay and cytotoxicity assays. Apoptosis induction on tumor cells after culturing with supernatants of Ad-hCD40L-transduced DC was analyzed by flow cytometry. RESULTS: Ad-hCD40L transduction induced a high expression of (s)CD40L and (m)CD40L on DC and seemed to induce a strong cellular CD40/CD40L interaction among DC, leading to the formation of cell aggregates. Due to the CD40/CD40L interaction, a significant upregulation of DC maturation markers and a Th1-shift on cytokines/chemokines in the supernatant of DC were achieved. Interestingly, a pure Th1-shift was only achieved, when a cellular CD40/CD40L interaction among DC took place. (s)CD40L induced almost no upregulation of maturation markers and rather resulted in a Th2-cytokine expression, such as IL-10. Correspondingly, (m)CD40L-expressing DC led to significant proliferation and stimulation of tumor-specific effector cells with increased cytotoxicity towards pancreatic, bile duct and colorectal tumor cells. Supernatants of Ad-hCD40L-transduced DC could also induce apoptosis in the different tumor cells in vitro. CONCLUSION: Stimulation of the immune checkpoint CD40L/CD40 by endogenous expression of (m)CD40L provokes a cellular interaction, which increases the immunomodulatory capacity of DC. A Th1 cytokine/chemokine expression is induced, leading to a significant proliferation and enabling cytotoxicity of effector cells towards human bile duct, pancreatic and colorectal tumor cells. The present data point to the promising approach for DC-based immunotherapy of gastrointestinal malignances by activating the CD40/CD40L immune checkpoint. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (10.1007/s00262-020-02746-x) contains supplementary material, which is available to authorized users.