Cargando…

Study of COVID-19 mathematical model of fractional order via modified Euler method

Our main goal is to develop some results for transmission of COVID-19 disease through Bats-Hosts-Reservoir-People (BHRP) mathematical model under the Caputo fractional order derivative (CFOD). In first step, the feasible region and bounded ness of the model are derived. Also, we derive the disease f...

Descripción completa

Detalles Bibliográficos
Autores principales: Nazir, Ghazala, Zeb, Anwar, Shah, Kamal, Saeed, Tareq, Khan, Rahmat Ali, Ullah Khan, Sheikh Irfan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053243/
http://dx.doi.org/10.1016/j.aej.2021.04.032
_version_ 1783680083863535616
author Nazir, Ghazala
Zeb, Anwar
Shah, Kamal
Saeed, Tareq
Khan, Rahmat Ali
Ullah Khan, Sheikh Irfan
author_facet Nazir, Ghazala
Zeb, Anwar
Shah, Kamal
Saeed, Tareq
Khan, Rahmat Ali
Ullah Khan, Sheikh Irfan
author_sort Nazir, Ghazala
collection PubMed
description Our main goal is to develop some results for transmission of COVID-19 disease through Bats-Hosts-Reservoir-People (BHRP) mathematical model under the Caputo fractional order derivative (CFOD). In first step, the feasible region and bounded ness of the model are derived. Also, we derive the disease free equilibrium points (DFE) and basic reproductive number for the model. Next, we establish theoretical results for the considered model via fixed point theory. Further, the condition for Hyers-Ulam’s (H-U) type stability for the approximate solution is also established. Then, we compute numerical solution for the concerned model by applying the modified Euler’s method (MEM). For the demonstration of our proposed method, we provide graphical representation of the concerned results using some real values for the parameters involve in our considered model.
format Online
Article
Text
id pubmed-8053243
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University.
record_format MEDLINE/PubMed
spelling pubmed-80532432021-04-19 Study of COVID-19 mathematical model of fractional order via modified Euler method Nazir, Ghazala Zeb, Anwar Shah, Kamal Saeed, Tareq Khan, Rahmat Ali Ullah Khan, Sheikh Irfan Alexandria Engineering Journal Article Our main goal is to develop some results for transmission of COVID-19 disease through Bats-Hosts-Reservoir-People (BHRP) mathematical model under the Caputo fractional order derivative (CFOD). In first step, the feasible region and bounded ness of the model are derived. Also, we derive the disease free equilibrium points (DFE) and basic reproductive number for the model. Next, we establish theoretical results for the considered model via fixed point theory. Further, the condition for Hyers-Ulam’s (H-U) type stability for the approximate solution is also established. Then, we compute numerical solution for the concerned model by applying the modified Euler’s method (MEM). For the demonstration of our proposed method, we provide graphical representation of the concerned results using some real values for the parameters involve in our considered model. THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. 2021-12 2021-04-18 /pmc/articles/PMC8053243/ http://dx.doi.org/10.1016/j.aej.2021.04.032 Text en © 2021 THE AUTHORS Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
spellingShingle Article
Nazir, Ghazala
Zeb, Anwar
Shah, Kamal
Saeed, Tareq
Khan, Rahmat Ali
Ullah Khan, Sheikh Irfan
Study of COVID-19 mathematical model of fractional order via modified Euler method
title Study of COVID-19 mathematical model of fractional order via modified Euler method
title_full Study of COVID-19 mathematical model of fractional order via modified Euler method
title_fullStr Study of COVID-19 mathematical model of fractional order via modified Euler method
title_full_unstemmed Study of COVID-19 mathematical model of fractional order via modified Euler method
title_short Study of COVID-19 mathematical model of fractional order via modified Euler method
title_sort study of covid-19 mathematical model of fractional order via modified euler method
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053243/
http://dx.doi.org/10.1016/j.aej.2021.04.032
work_keys_str_mv AT nazirghazala studyofcovid19mathematicalmodeloffractionalorderviamodifiedeulermethod
AT zebanwar studyofcovid19mathematicalmodeloffractionalorderviamodifiedeulermethod
AT shahkamal studyofcovid19mathematicalmodeloffractionalorderviamodifiedeulermethod
AT saeedtareq studyofcovid19mathematicalmodeloffractionalorderviamodifiedeulermethod
AT khanrahmatali studyofcovid19mathematicalmodeloffractionalorderviamodifiedeulermethod
AT ullahkhansheikhirfan studyofcovid19mathematicalmodeloffractionalorderviamodifiedeulermethod