Cargando…

Treatment with senicapoc in a porcine model of acute respiratory distress syndrome

BACKGROUND: Senicapoc is a potent and selective blocker of KCa3.1, a calcium-activated potassium channel of intermediate conductance. In the present study, we investigated whether there is a beneficial effect of senicapoc in a large animal model of acute respiratory distress syndrome (ARDS). The pri...

Descripción completa

Detalles Bibliográficos
Autores principales: Petersen, Asbjørn G., Lind, Peter C., Jensen, Anne-Sophie B., Eggertsen, Mark A., Granfeldt, Asger, Simonsen, Ulf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer International Publishing 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8053424/
https://www.ncbi.nlm.nih.gov/pubmed/33870468
http://dx.doi.org/10.1186/s40635-021-00381-z
Descripción
Sumario:BACKGROUND: Senicapoc is a potent and selective blocker of KCa3.1, a calcium-activated potassium channel of intermediate conductance. In the present study, we investigated whether there is a beneficial effect of senicapoc in a large animal model of acute respiratory distress syndrome (ARDS). The primary end point was the PaO(2)/FiO(2) ratio. METHODS: ARDS was induced in female pigs (42–49 kg) by repeated lung lavages followed by injurious mechanical ventilation. Animals were then randomly assigned to vehicle (n = 9) or intravenous senicapoc (10 mg, n = 9) and received lung-protective ventilation for 6 h. RESULTS: Final senicapoc plasma concentrations were 67 ± 18 nM (n = 9). Senicapoc failed to change the primary endpoint PaO(2)/FiO(2) ratio (senicapoc, 133 ± 23 mmHg; vehicle, 149 ± 68 mmHg). Lung compliance remained similar in the two groups. Senicapoc reduced the level of white blood cells and neutrophils, while the proinflammatory cytokines TNFα, IL-1β, and IL-6 in the bronchoalveolar lavage fluid were unaltered 6 h after induction of the lung injury. Senicapoc-treatment reduced the level of neutrophils in the alveolar space but with no difference between groups in the cumulative lung injury score. Histological analysis of pulmonary hemorrhage indicated a positive effect of senicapoc on alveolar–capillary barrier function, but this was not supported by measurements of albumin content and total protein in the bronchoalveolar lavage fluid. CONCLUSIONS: In summary, senicapoc failed to improve the primary endpoint PaO(2)/FiO(2) ratio, but reduced pulmonary hemorrhage and the influx of neutrophils into the lung. These findings open the perspective that blocking KCa3.1 channels is a potential treatment to reduce alveolar neutrophil accumulation and improve long-term outcome in ARDS. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40635-021-00381-z.