Cargando…
Mechanics of two filaments in tight orthogonal contact
Networks of flexible filaments often involve regions of tight contact. Predictively understanding the equilibrium configurations of these systems is challenging due to intricate couplings between topology, geometry, large nonlinear deformations, and friction. Here, we perform an in-depth study of a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8054001/ https://www.ncbi.nlm.nih.gov/pubmed/33876761 http://dx.doi.org/10.1073/pnas.2021684118 |
_version_ | 1783680227045539840 |
---|---|
author | Grandgeorge, Paul Baek, Changyeob Singh, Harmeet Johanns, Paul Sano, Tomohiko G. Flynn, Alastair Maddocks, John H. Reis, Pedro M. |
author_facet | Grandgeorge, Paul Baek, Changyeob Singh, Harmeet Johanns, Paul Sano, Tomohiko G. Flynn, Alastair Maddocks, John H. Reis, Pedro M. |
author_sort | Grandgeorge, Paul |
collection | PubMed |
description | Networks of flexible filaments often involve regions of tight contact. Predictively understanding the equilibrium configurations of these systems is challenging due to intricate couplings between topology, geometry, large nonlinear deformations, and friction. Here, we perform an in-depth study of a simple, yet canonical, problem that captures the essence of contact between filaments. In the orthogonal clasp, two filaments are brought into contact, with each centerline lying in one of a pair of orthogonal planes. Our data from X-ray tomography ([Formula: see text] CT) and mechanical testing experiments are in excellent agreement with finite element method (FEM) simulations. Despite the apparent simplicity of the physical system, the data exhibit strikingly unintuitive behavior, even when the contact is frictionless. Specifically, we observe a curvilinear diamond-shaped ridge in the contact-pressure field between the two filaments, sometimes with an inner gap. When a relative displacement is imposed between the filaments, friction is activated, and a highly asymmetric pressure field develops. These findings contrast to the classic capstan analysis of a single filament wrapped around a rigid body. Both the [Formula: see text] CT and FEM data indicate that the cross-sections of the filaments can deform significantly. Nonetheless, an idealized geometrical theory assuming undeformable tube cross-sections and neglecting elasticity rationalizes our observations qualitatively and highlights the central role of the small, but nonzero, tube radius of the filaments. We believe that our orthogonal clasp analysis provides a building block for future modeling efforts in frictional contact mechanics of more complex filamentary structures. |
format | Online Article Text |
id | pubmed-8054001 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | National Academy of Sciences |
record_format | MEDLINE/PubMed |
spelling | pubmed-80540012021-05-04 Mechanics of two filaments in tight orthogonal contact Grandgeorge, Paul Baek, Changyeob Singh, Harmeet Johanns, Paul Sano, Tomohiko G. Flynn, Alastair Maddocks, John H. Reis, Pedro M. Proc Natl Acad Sci U S A Physical Sciences Networks of flexible filaments often involve regions of tight contact. Predictively understanding the equilibrium configurations of these systems is challenging due to intricate couplings between topology, geometry, large nonlinear deformations, and friction. Here, we perform an in-depth study of a simple, yet canonical, problem that captures the essence of contact between filaments. In the orthogonal clasp, two filaments are brought into contact, with each centerline lying in one of a pair of orthogonal planes. Our data from X-ray tomography ([Formula: see text] CT) and mechanical testing experiments are in excellent agreement with finite element method (FEM) simulations. Despite the apparent simplicity of the physical system, the data exhibit strikingly unintuitive behavior, even when the contact is frictionless. Specifically, we observe a curvilinear diamond-shaped ridge in the contact-pressure field between the two filaments, sometimes with an inner gap. When a relative displacement is imposed between the filaments, friction is activated, and a highly asymmetric pressure field develops. These findings contrast to the classic capstan analysis of a single filament wrapped around a rigid body. Both the [Formula: see text] CT and FEM data indicate that the cross-sections of the filaments can deform significantly. Nonetheless, an idealized geometrical theory assuming undeformable tube cross-sections and neglecting elasticity rationalizes our observations qualitatively and highlights the central role of the small, but nonzero, tube radius of the filaments. We believe that our orthogonal clasp analysis provides a building block for future modeling efforts in frictional contact mechanics of more complex filamentary structures. National Academy of Sciences 2021-04-13 2021-04-05 /pmc/articles/PMC8054001/ /pubmed/33876761 http://dx.doi.org/10.1073/pnas.2021684118 Text en Copyright © 2021 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) . |
spellingShingle | Physical Sciences Grandgeorge, Paul Baek, Changyeob Singh, Harmeet Johanns, Paul Sano, Tomohiko G. Flynn, Alastair Maddocks, John H. Reis, Pedro M. Mechanics of two filaments in tight orthogonal contact |
title | Mechanics of two filaments in tight orthogonal contact |
title_full | Mechanics of two filaments in tight orthogonal contact |
title_fullStr | Mechanics of two filaments in tight orthogonal contact |
title_full_unstemmed | Mechanics of two filaments in tight orthogonal contact |
title_short | Mechanics of two filaments in tight orthogonal contact |
title_sort | mechanics of two filaments in tight orthogonal contact |
topic | Physical Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8054001/ https://www.ncbi.nlm.nih.gov/pubmed/33876761 http://dx.doi.org/10.1073/pnas.2021684118 |
work_keys_str_mv | AT grandgeorgepaul mechanicsoftwofilamentsintightorthogonalcontact AT baekchangyeob mechanicsoftwofilamentsintightorthogonalcontact AT singhharmeet mechanicsoftwofilamentsintightorthogonalcontact AT johannspaul mechanicsoftwofilamentsintightorthogonalcontact AT sanotomohikog mechanicsoftwofilamentsintightorthogonalcontact AT flynnalastair mechanicsoftwofilamentsintightorthogonalcontact AT maddocksjohnh mechanicsoftwofilamentsintightorthogonalcontact AT reispedrom mechanicsoftwofilamentsintightorthogonalcontact |