Cargando…
Strategies to Improve Convolutional Neural Network Generalizability and Reference Standards for Glaucoma Detection From OCT Scans
PURPOSE: To develop and evaluate methods to improve the generalizability of convolutional neural networks (CNNs) trained to detect glaucoma from optical coherence tomography retinal nerve fiber layer probability maps, as well as optical coherence tomography circumpapillary disc (circle) b-scans, and...
Autores principales: | Thakoor, Kaveri A., Li, Xinhui, Tsamis, Emmanouil, Zemborain, Zane Z., De Moraes, Carlos Gustavo, Sajda, Paul, Hood, Donald C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Association for Research in Vision and Ophthalmology
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8054628/ https://www.ncbi.nlm.nih.gov/pubmed/34003990 http://dx.doi.org/10.1167/tvst.10.4.16 |
Ejemplares similares
-
Reasons why OCT Global Circumpapillary Retinal Nerve Fiber Layer Thickness is a Poor Measure of Glaucomatous Progression
por: Eguia, Melvi D., et al.
Publicado: (2020) -
The OCT RNFL Probability Map and Artifacts Resembling Glaucomatous Damage
por: La Bruna, Sol, et al.
Publicado: (2022) -
An Automated Method for Assessing Topographical Structure–Function Agreement in Abnormal Glaucomatous Regions
por: Tsamis, Emmanouil, et al.
Publicado: (2020) -
Test of a Retinal Nerve Fiber Bundle Trajectory Model Using Eyes With Glaucomatous Optic Neuropathy
por: Zemborain, Zane Zenon, et al.
Publicado: (2022) -
Extracting decision-making features from the unstructured eye movements of clinicians on glaucoma OCT reports and developing AI models to classify expertise
por: Akerman, Michelle, et al.
Publicado: (2023)