Cargando…

Neural stem cells traffic functional mitochondria via extracellular vesicles

Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mec...

Descripción completa

Detalles Bibliográficos
Autores principales: Peruzzotti-Jametti, Luca, Bernstock, Joshua D., Willis, Cory M., Manferrari, Giulia, Rogall, Rebecca, Fernandez-Vizarra, Erika, Williamson, James C., Braga, Alice, van den Bosch, Aletta, Leonardi, Tommaso, Krzak, Grzegorz, Kittel, Ágnes, Benincá, Cristiane, Vicario, Nunzio, Tan, Sisareuth, Bastos, Carlos, Bicci, Iacopo, Iraci, Nunzio, Smith, Jayden A., Peacock, Ben, Muller, Karin H., Lehner, Paul J., Buzas, Edit Iren, Faria, Nuno, Zeviani, Massimo, Frezza, Christian, Brisson, Alain, Matheson, Nicholas J., Viscomi, Carlo, Pluchino, Stefano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055036/
https://www.ncbi.nlm.nih.gov/pubmed/33826607
http://dx.doi.org/10.1371/journal.pbio.3001166
_version_ 1783680386424897536
author Peruzzotti-Jametti, Luca
Bernstock, Joshua D.
Willis, Cory M.
Manferrari, Giulia
Rogall, Rebecca
Fernandez-Vizarra, Erika
Williamson, James C.
Braga, Alice
van den Bosch, Aletta
Leonardi, Tommaso
Krzak, Grzegorz
Kittel, Ágnes
Benincá, Cristiane
Vicario, Nunzio
Tan, Sisareuth
Bastos, Carlos
Bicci, Iacopo
Iraci, Nunzio
Smith, Jayden A.
Peacock, Ben
Muller, Karin H.
Lehner, Paul J.
Buzas, Edit Iren
Faria, Nuno
Zeviani, Massimo
Frezza, Christian
Brisson, Alain
Matheson, Nicholas J.
Viscomi, Carlo
Pluchino, Stefano
author_facet Peruzzotti-Jametti, Luca
Bernstock, Joshua D.
Willis, Cory M.
Manferrari, Giulia
Rogall, Rebecca
Fernandez-Vizarra, Erika
Williamson, James C.
Braga, Alice
van den Bosch, Aletta
Leonardi, Tommaso
Krzak, Grzegorz
Kittel, Ágnes
Benincá, Cristiane
Vicario, Nunzio
Tan, Sisareuth
Bastos, Carlos
Bicci, Iacopo
Iraci, Nunzio
Smith, Jayden A.
Peacock, Ben
Muller, Karin H.
Lehner, Paul J.
Buzas, Edit Iren
Faria, Nuno
Zeviani, Massimo
Frezza, Christian
Brisson, Alain
Matheson, Nicholas J.
Viscomi, Carlo
Pluchino, Stefano
author_sort Peruzzotti-Jametti, Luca
collection PubMed
description Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho(0) cells rescued mitochondrial function and increased Rho(0) cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases.
format Online
Article
Text
id pubmed-8055036
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-80550362021-04-30 Neural stem cells traffic functional mitochondria via extracellular vesicles Peruzzotti-Jametti, Luca Bernstock, Joshua D. Willis, Cory M. Manferrari, Giulia Rogall, Rebecca Fernandez-Vizarra, Erika Williamson, James C. Braga, Alice van den Bosch, Aletta Leonardi, Tommaso Krzak, Grzegorz Kittel, Ágnes Benincá, Cristiane Vicario, Nunzio Tan, Sisareuth Bastos, Carlos Bicci, Iacopo Iraci, Nunzio Smith, Jayden A. Peacock, Ben Muller, Karin H. Lehner, Paul J. Buzas, Edit Iren Faria, Nuno Zeviani, Massimo Frezza, Christian Brisson, Alain Matheson, Nicholas J. Viscomi, Carlo Pluchino, Stefano PLoS Biol Research Article Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho(0) cells rescued mitochondrial function and increased Rho(0) cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases. Public Library of Science 2021-04-07 /pmc/articles/PMC8055036/ /pubmed/33826607 http://dx.doi.org/10.1371/journal.pbio.3001166 Text en © 2021 Peruzzotti-Jametti et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Peruzzotti-Jametti, Luca
Bernstock, Joshua D.
Willis, Cory M.
Manferrari, Giulia
Rogall, Rebecca
Fernandez-Vizarra, Erika
Williamson, James C.
Braga, Alice
van den Bosch, Aletta
Leonardi, Tommaso
Krzak, Grzegorz
Kittel, Ágnes
Benincá, Cristiane
Vicario, Nunzio
Tan, Sisareuth
Bastos, Carlos
Bicci, Iacopo
Iraci, Nunzio
Smith, Jayden A.
Peacock, Ben
Muller, Karin H.
Lehner, Paul J.
Buzas, Edit Iren
Faria, Nuno
Zeviani, Massimo
Frezza, Christian
Brisson, Alain
Matheson, Nicholas J.
Viscomi, Carlo
Pluchino, Stefano
Neural stem cells traffic functional mitochondria via extracellular vesicles
title Neural stem cells traffic functional mitochondria via extracellular vesicles
title_full Neural stem cells traffic functional mitochondria via extracellular vesicles
title_fullStr Neural stem cells traffic functional mitochondria via extracellular vesicles
title_full_unstemmed Neural stem cells traffic functional mitochondria via extracellular vesicles
title_short Neural stem cells traffic functional mitochondria via extracellular vesicles
title_sort neural stem cells traffic functional mitochondria via extracellular vesicles
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055036/
https://www.ncbi.nlm.nih.gov/pubmed/33826607
http://dx.doi.org/10.1371/journal.pbio.3001166
work_keys_str_mv AT peruzzottijamettiluca neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT bernstockjoshuad neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT williscorym neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT manferrarigiulia neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT rogallrebecca neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT fernandezvizarraerika neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT williamsonjamesc neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT bragaalice neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT vandenboschaletta neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT leonarditommaso neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT krzakgrzegorz neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT kittelagnes neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT benincacristiane neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT vicarionunzio neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT tansisareuth neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT bastoscarlos neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT bicciiacopo neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT iracinunzio neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT smithjaydena neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT peacockben neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT mullerkarinh neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT lehnerpaulj neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT buzaseditiren neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT farianuno neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT zevianimassimo neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT frezzachristian neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT brissonalain neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT mathesonnicholasj neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT viscomicarlo neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles
AT pluchinostefano neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles