Cargando…
Neural stem cells traffic functional mitochondria via extracellular vesicles
Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mec...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055036/ https://www.ncbi.nlm.nih.gov/pubmed/33826607 http://dx.doi.org/10.1371/journal.pbio.3001166 |
_version_ | 1783680386424897536 |
---|---|
author | Peruzzotti-Jametti, Luca Bernstock, Joshua D. Willis, Cory M. Manferrari, Giulia Rogall, Rebecca Fernandez-Vizarra, Erika Williamson, James C. Braga, Alice van den Bosch, Aletta Leonardi, Tommaso Krzak, Grzegorz Kittel, Ágnes Benincá, Cristiane Vicario, Nunzio Tan, Sisareuth Bastos, Carlos Bicci, Iacopo Iraci, Nunzio Smith, Jayden A. Peacock, Ben Muller, Karin H. Lehner, Paul J. Buzas, Edit Iren Faria, Nuno Zeviani, Massimo Frezza, Christian Brisson, Alain Matheson, Nicholas J. Viscomi, Carlo Pluchino, Stefano |
author_facet | Peruzzotti-Jametti, Luca Bernstock, Joshua D. Willis, Cory M. Manferrari, Giulia Rogall, Rebecca Fernandez-Vizarra, Erika Williamson, James C. Braga, Alice van den Bosch, Aletta Leonardi, Tommaso Krzak, Grzegorz Kittel, Ágnes Benincá, Cristiane Vicario, Nunzio Tan, Sisareuth Bastos, Carlos Bicci, Iacopo Iraci, Nunzio Smith, Jayden A. Peacock, Ben Muller, Karin H. Lehner, Paul J. Buzas, Edit Iren Faria, Nuno Zeviani, Massimo Frezza, Christian Brisson, Alain Matheson, Nicholas J. Viscomi, Carlo Pluchino, Stefano |
author_sort | Peruzzotti-Jametti, Luca |
collection | PubMed |
description | Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho(0) cells rescued mitochondrial function and increased Rho(0) cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases. |
format | Online Article Text |
id | pubmed-8055036 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-80550362021-04-30 Neural stem cells traffic functional mitochondria via extracellular vesicles Peruzzotti-Jametti, Luca Bernstock, Joshua D. Willis, Cory M. Manferrari, Giulia Rogall, Rebecca Fernandez-Vizarra, Erika Williamson, James C. Braga, Alice van den Bosch, Aletta Leonardi, Tommaso Krzak, Grzegorz Kittel, Ágnes Benincá, Cristiane Vicario, Nunzio Tan, Sisareuth Bastos, Carlos Bicci, Iacopo Iraci, Nunzio Smith, Jayden A. Peacock, Ben Muller, Karin H. Lehner, Paul J. Buzas, Edit Iren Faria, Nuno Zeviani, Massimo Frezza, Christian Brisson, Alain Matheson, Nicholas J. Viscomi, Carlo Pluchino, Stefano PLoS Biol Research Article Neural stem cell (NSC) transplantation induces recovery in animal models of central nervous system (CNS) diseases. Although the replacement of lost endogenous cells was originally proposed as the primary healing mechanism of NSC grafts, it is now clear that transplanted NSCs operate via multiple mechanisms, including the horizontal exchange of therapeutic cargoes to host cells via extracellular vesicles (EVs). EVs are membrane particles trafficking nucleic acids, proteins, metabolites and metabolic enzymes, lipids, and entire organelles. However, the function and the contribution of these cargoes to the broad therapeutic effects of NSCs are yet to be fully understood. Mitochondrial dysfunction is an established feature of several inflammatory and degenerative CNS disorders, most of which are potentially treatable with exogenous stem cell therapeutics. Herein, we investigated the hypothesis that NSCs release and traffic functional mitochondria via EVs to restore mitochondrial function in target cells. Untargeted proteomics revealed a significant enrichment of mitochondrial proteins spontaneously released by NSCs in EVs. Morphological and functional analyses confirmed the presence of ultrastructurally intact mitochondria within EVs with conserved membrane potential and respiration. We found that the transfer of these mitochondria from EVs to mtDNA-deficient L929 Rho(0) cells rescued mitochondrial function and increased Rho(0) cell survival. Furthermore, the incorporation of mitochondria from EVs into inflammatory mononuclear phagocytes restored normal mitochondrial dynamics and cellular metabolism and reduced the expression of pro-inflammatory markers in target cells. When transplanted in an animal model of multiple sclerosis, exogenous NSCs actively transferred mitochondria to mononuclear phagocytes and induced a significant amelioration of clinical deficits. Our data provide the first evidence that NSCs deliver functional mitochondria to target cells via EVs, paving the way for the development of novel (a)cellular approaches aimed at restoring mitochondrial dysfunction not only in multiple sclerosis, but also in degenerative neurological diseases. Public Library of Science 2021-04-07 /pmc/articles/PMC8055036/ /pubmed/33826607 http://dx.doi.org/10.1371/journal.pbio.3001166 Text en © 2021 Peruzzotti-Jametti et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Peruzzotti-Jametti, Luca Bernstock, Joshua D. Willis, Cory M. Manferrari, Giulia Rogall, Rebecca Fernandez-Vizarra, Erika Williamson, James C. Braga, Alice van den Bosch, Aletta Leonardi, Tommaso Krzak, Grzegorz Kittel, Ágnes Benincá, Cristiane Vicario, Nunzio Tan, Sisareuth Bastos, Carlos Bicci, Iacopo Iraci, Nunzio Smith, Jayden A. Peacock, Ben Muller, Karin H. Lehner, Paul J. Buzas, Edit Iren Faria, Nuno Zeviani, Massimo Frezza, Christian Brisson, Alain Matheson, Nicholas J. Viscomi, Carlo Pluchino, Stefano Neural stem cells traffic functional mitochondria via extracellular vesicles |
title | Neural stem cells traffic functional mitochondria via extracellular vesicles |
title_full | Neural stem cells traffic functional mitochondria via extracellular vesicles |
title_fullStr | Neural stem cells traffic functional mitochondria via extracellular vesicles |
title_full_unstemmed | Neural stem cells traffic functional mitochondria via extracellular vesicles |
title_short | Neural stem cells traffic functional mitochondria via extracellular vesicles |
title_sort | neural stem cells traffic functional mitochondria via extracellular vesicles |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055036/ https://www.ncbi.nlm.nih.gov/pubmed/33826607 http://dx.doi.org/10.1371/journal.pbio.3001166 |
work_keys_str_mv | AT peruzzottijamettiluca neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT bernstockjoshuad neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT williscorym neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT manferrarigiulia neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT rogallrebecca neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT fernandezvizarraerika neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT williamsonjamesc neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT bragaalice neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT vandenboschaletta neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT leonarditommaso neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT krzakgrzegorz neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT kittelagnes neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT benincacristiane neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT vicarionunzio neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT tansisareuth neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT bastoscarlos neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT bicciiacopo neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT iracinunzio neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT smithjaydena neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT peacockben neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT mullerkarinh neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT lehnerpaulj neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT buzaseditiren neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT farianuno neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT zevianimassimo neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT frezzachristian neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT brissonalain neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT mathesonnicholasj neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT viscomicarlo neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles AT pluchinostefano neuralstemcellstrafficfunctionalmitochondriaviaextracellularvesicles |