Cargando…
Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function
MOTIVATION: Protein function prediction is a difficult bioinformatics problem. Many recent methods use deep neural networks to learn complex sequence representations and predict function from these. Deep supervised models require a lot of labeled training data which are not available for this task....
Autores principales: | Villegas-Morcillo, Amelia, Makrodimitris, Stavros, van Ham, Roeland C H J, Gomez, Angel M, Sanchez, Victoria, Reinders, Marcel J T |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055213/ https://www.ncbi.nlm.nih.gov/pubmed/32797179 http://dx.doi.org/10.1093/bioinformatics/btaa701 |
Ejemplares similares
-
A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins
por: Makrodimitris, Stavros, et al.
Publicado: (2020) -
Improving protein function prediction using protein sequence and GO-term similarities
por: Makrodimitris, Stavros, et al.
Publicado: (2019) -
Automatic Gene Function Prediction in the 2020’s
por: Makrodimitris, Stavros, et al.
Publicado: (2020) -
Metric learning on expression data for gene function prediction
por: Makrodimitris, Stavros, et al.
Publicado: (2020) -
Deep Features from Pretrained Networks Do Not Outperform Hand-Crafted Features in Radiomics
por: Demircioğlu, Aydin
Publicado: (2023)