Cargando…
Scalable machine learning-assisted model exploration and inference using Sciope
SUMMARY: Discrete stochastic models of gene regulatory networks are fundamental tools for in silico study of stochastic gene regulatory networks. Likelihood-free inference and model exploration are critical applications to study a system using such models. However, the massive computational cost of...
Autores principales: | Singh, Prashant, Wrede, Fredrik, Hellander, Andreas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055224/ https://www.ncbi.nlm.nih.gov/pubmed/32706854 http://dx.doi.org/10.1093/bioinformatics/btaa673 |
Ejemplares similares
-
Epidemiological modeling in StochSS Live!
por: Jiang, Richard, et al.
Publicado: (2021) -
RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference
por: Kozlov, Alexey M, et al.
Publicado: (2019) -
Cellenium—a scalable and interactive visual analytics app for exploring multimodal single-cell data
por: Jahn, Carsten, et al.
Publicado: (2023) -
SparkINFERNO: a scalable high-throughput pipeline for inferring molecular mechanisms of non-coding genetic variants
por: Kuksa, Pavel P, et al.
Publicado: (2020) -
CellProfiler Analyst 3.0: accessible data exploration and machine learning for image analysis
por: Stirling, David R, et al.
Publicado: (2021)