Cargando…
The antibacterial effects of vitamin D3 against mutans streptococci: an in vitro study
PURPOSE: This study aims to evaluate the antimicrobial effects of the cholecalciferol vitamin D3 against Streptococcus sobrinus (Strep. sobrinus) and Streptococcus mutans (Strep. mutans) bacteria in vitro that is considered the main causative bacteria in dental caries development. MATERIALS AND METH...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Istanbul University Faculty of Dentistry
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055259/ https://www.ncbi.nlm.nih.gov/pubmed/33937756 http://dx.doi.org/10.26650/eor.20210119 |
Sumario: | PURPOSE: This study aims to evaluate the antimicrobial effects of the cholecalciferol vitamin D3 against Streptococcus sobrinus (Strep. sobrinus) and Streptococcus mutans (Strep. mutans) bacteria in vitro that is considered the main causative bacteria in dental caries development. MATERIALS AND METHODS: The antimicrobial effects of vitamin D3 were evaluated against Strep. sobrinus and Strep mutans using the agar disc diffusion method. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of vitamin D3 were determined using a microdilution method following the guidelines by the Clinical Laboratory Standards Institute (CLSI). Scanning electron microscope (SEM) was used to evaluate the morphological changes of bacterial cells following exposure to vitamin D3. RESULTS: Strep. sobrinus was more sensitive to vitamin D3 compared to Strep. mutans bacteria. The MIC values of vitamin D3 against Strep. sobrinus and Strep. mutans were 60 μg/ mL and 250 μg/mL respectively whereas the MBC values were 120 μg/mL and 500 μg/mL, respectively. Moreover, significant changes in the bacterial morphology were observed in treated bacterial cells with vitamin D3 as compared to the untreated control bacteria using SEM. CONCLUSION: These findings suggested that vitamin D3 has excellent antimicrobial effects against Strep. sobrinus and Strep. mutans and may be considered as a promising compound in the prevention of dental caries in the future. Further research is recommended to elucidate the mechanism of vitamin D3 on these bacteria. |
---|