Cargando…
Skin Lesion Classification Using Additional Patient Information
In this paper, we describe our method for skin lesion classification. The goal is to classify skin lesions based on dermoscopic images to several diagnoses' classes presented in the HAM (Human Against Machine) dataset: melanoma (MEL), melanocytic nevus (NV), basal cell carcinoma (BCC), actinic...
Autores principales: | Sun, Qilin, Huang, Chao, Chen, Minjie, Xu, Hui, Yang, Yali |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055397/ https://www.ncbi.nlm.nih.gov/pubmed/33937410 http://dx.doi.org/10.1155/2021/6673852 |
Ejemplares similares
-
Classification of clinical skin lesions with double-branch networks
por: Wang, Hui, et al.
Publicado: (2023) -
Multiscale Feature Fusion for Skin Lesion Classification
por: Wang, Gang, et al.
Publicado: (2023) -
Double-Balanced Loss for Imbalanced Colorectal Lesion Classification
por: Yu, Chang, et al.
Publicado: (2022) -
A Deep CNN Transformer Hybrid Model for Skin Lesion Classification of Dermoscopic Images Using Focal Loss
por: Nie, Yali, et al.
Publicado: (2022) -
Classification of Skin Cancer Lesions Using Explainable Deep Learning
por: Zia Ur Rehman, Muhammad, et al.
Publicado: (2022)