Cargando…

Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis

Heart failure due to high blood pressure or ischemic injury remains a major problem for millions of patients worldwide. Despite enormous advances in deciphering the molecular mechanisms underlying heart failure progression, the cell-type specific adaptations and especially intercellular signaling re...

Descripción completa

Detalles Bibliográficos
Autores principales: Dittrich, Gesine M., Froese, Natali, Wang, Xue, Kroeger, Hannah, Wang, Honghui, Szaroszyk, Malgorzata, Malek-Mohammadi, Mona, Cordero, Julio, Keles, Merve, Korf-Klingebiel, Mortimer, Wollert, Kai C., Geffers, Robert, Mayr, Manuel, Conway, Simon J., Dobreva, Gergana, Bauersachs, Johann, Heineke, Joerg
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Berlin Heidelberg 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055639/
https://www.ncbi.nlm.nih.gov/pubmed/33876316
http://dx.doi.org/10.1007/s00395-021-00862-y
_version_ 1783680491578195968
author Dittrich, Gesine M.
Froese, Natali
Wang, Xue
Kroeger, Hannah
Wang, Honghui
Szaroszyk, Malgorzata
Malek-Mohammadi, Mona
Cordero, Julio
Keles, Merve
Korf-Klingebiel, Mortimer
Wollert, Kai C.
Geffers, Robert
Mayr, Manuel
Conway, Simon J.
Dobreva, Gergana
Bauersachs, Johann
Heineke, Joerg
author_facet Dittrich, Gesine M.
Froese, Natali
Wang, Xue
Kroeger, Hannah
Wang, Honghui
Szaroszyk, Malgorzata
Malek-Mohammadi, Mona
Cordero, Julio
Keles, Merve
Korf-Klingebiel, Mortimer
Wollert, Kai C.
Geffers, Robert
Mayr, Manuel
Conway, Simon J.
Dobreva, Gergana
Bauersachs, Johann
Heineke, Joerg
author_sort Dittrich, Gesine M.
collection PubMed
description Heart failure due to high blood pressure or ischemic injury remains a major problem for millions of patients worldwide. Despite enormous advances in deciphering the molecular mechanisms underlying heart failure progression, the cell-type specific adaptations and especially intercellular signaling remain poorly understood. Cardiac fibroblasts express high levels of cardiogenic transcription factors such as GATA-4 and GATA-6, but their role in fibroblasts during stress is not known. Here, we show that fibroblast GATA-4 and GATA-6 promote adaptive remodeling in pressure overload induced cardiac hypertrophy. Using a mouse model with specific single or double deletion of Gata4 and Gata6 in stress activated fibroblasts, we found a reduced myocardial capillarization in mice with Gata4/6 double deletion following pressure overload, while single deletion of Gata4 or Gata6 had no effect. Importantly, we confirmed the reduced angiogenic response using an in vitro co-culture system with Gata4/6 deleted cardiac fibroblasts and endothelial cells. A comprehensive RNA-sequencing analysis revealed an upregulation of anti-angiogenic genes upon Gata4/6 deletion in fibroblasts, and siRNA mediated downregulation of these genes restored endothelial cell growth. In conclusion, we identified a novel role for the cardiogenic transcription factors GATA-4 and GATA-6 in heart fibroblasts, where both proteins act in concert to promote myocardial capillarization and heart function by directing intercellular crosstalk. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00395-021-00862-y.
format Online
Article
Text
id pubmed-8055639
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Springer Berlin Heidelberg
record_format MEDLINE/PubMed
spelling pubmed-80556392021-05-05 Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis Dittrich, Gesine M. Froese, Natali Wang, Xue Kroeger, Hannah Wang, Honghui Szaroszyk, Malgorzata Malek-Mohammadi, Mona Cordero, Julio Keles, Merve Korf-Klingebiel, Mortimer Wollert, Kai C. Geffers, Robert Mayr, Manuel Conway, Simon J. Dobreva, Gergana Bauersachs, Johann Heineke, Joerg Basic Res Cardiol Original Contribution Heart failure due to high blood pressure or ischemic injury remains a major problem for millions of patients worldwide. Despite enormous advances in deciphering the molecular mechanisms underlying heart failure progression, the cell-type specific adaptations and especially intercellular signaling remain poorly understood. Cardiac fibroblasts express high levels of cardiogenic transcription factors such as GATA-4 and GATA-6, but their role in fibroblasts during stress is not known. Here, we show that fibroblast GATA-4 and GATA-6 promote adaptive remodeling in pressure overload induced cardiac hypertrophy. Using a mouse model with specific single or double deletion of Gata4 and Gata6 in stress activated fibroblasts, we found a reduced myocardial capillarization in mice with Gata4/6 double deletion following pressure overload, while single deletion of Gata4 or Gata6 had no effect. Importantly, we confirmed the reduced angiogenic response using an in vitro co-culture system with Gata4/6 deleted cardiac fibroblasts and endothelial cells. A comprehensive RNA-sequencing analysis revealed an upregulation of anti-angiogenic genes upon Gata4/6 deletion in fibroblasts, and siRNA mediated downregulation of these genes restored endothelial cell growth. In conclusion, we identified a novel role for the cardiogenic transcription factors GATA-4 and GATA-6 in heart fibroblasts, where both proteins act in concert to promote myocardial capillarization and heart function by directing intercellular crosstalk. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00395-021-00862-y. Springer Berlin Heidelberg 2021-04-19 2021 /pmc/articles/PMC8055639/ /pubmed/33876316 http://dx.doi.org/10.1007/s00395-021-00862-y Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Original Contribution
Dittrich, Gesine M.
Froese, Natali
Wang, Xue
Kroeger, Hannah
Wang, Honghui
Szaroszyk, Malgorzata
Malek-Mohammadi, Mona
Cordero, Julio
Keles, Merve
Korf-Klingebiel, Mortimer
Wollert, Kai C.
Geffers, Robert
Mayr, Manuel
Conway, Simon J.
Dobreva, Gergana
Bauersachs, Johann
Heineke, Joerg
Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis
title Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis
title_full Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis
title_fullStr Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis
title_full_unstemmed Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis
title_short Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis
title_sort fibroblast gata-4 and gata-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis
topic Original Contribution
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055639/
https://www.ncbi.nlm.nih.gov/pubmed/33876316
http://dx.doi.org/10.1007/s00395-021-00862-y
work_keys_str_mv AT dittrichgesinem fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT froesenatali fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT wangxue fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT kroegerhannah fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT wanghonghui fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT szaroszykmalgorzata fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT malekmohammadimona fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT corderojulio fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT kelesmerve fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT korfklingebielmortimer fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT wollertkaic fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT geffersrobert fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT mayrmanuel fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT conwaysimonj fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT dobrevagergana fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT bauersachsjohann fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis
AT heinekejoerg fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis