Cargando…
Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis
Heart failure due to high blood pressure or ischemic injury remains a major problem for millions of patients worldwide. Despite enormous advances in deciphering the molecular mechanisms underlying heart failure progression, the cell-type specific adaptations and especially intercellular signaling re...
Autores principales: | , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055639/ https://www.ncbi.nlm.nih.gov/pubmed/33876316 http://dx.doi.org/10.1007/s00395-021-00862-y |
_version_ | 1783680491578195968 |
---|---|
author | Dittrich, Gesine M. Froese, Natali Wang, Xue Kroeger, Hannah Wang, Honghui Szaroszyk, Malgorzata Malek-Mohammadi, Mona Cordero, Julio Keles, Merve Korf-Klingebiel, Mortimer Wollert, Kai C. Geffers, Robert Mayr, Manuel Conway, Simon J. Dobreva, Gergana Bauersachs, Johann Heineke, Joerg |
author_facet | Dittrich, Gesine M. Froese, Natali Wang, Xue Kroeger, Hannah Wang, Honghui Szaroszyk, Malgorzata Malek-Mohammadi, Mona Cordero, Julio Keles, Merve Korf-Klingebiel, Mortimer Wollert, Kai C. Geffers, Robert Mayr, Manuel Conway, Simon J. Dobreva, Gergana Bauersachs, Johann Heineke, Joerg |
author_sort | Dittrich, Gesine M. |
collection | PubMed |
description | Heart failure due to high blood pressure or ischemic injury remains a major problem for millions of patients worldwide. Despite enormous advances in deciphering the molecular mechanisms underlying heart failure progression, the cell-type specific adaptations and especially intercellular signaling remain poorly understood. Cardiac fibroblasts express high levels of cardiogenic transcription factors such as GATA-4 and GATA-6, but their role in fibroblasts during stress is not known. Here, we show that fibroblast GATA-4 and GATA-6 promote adaptive remodeling in pressure overload induced cardiac hypertrophy. Using a mouse model with specific single or double deletion of Gata4 and Gata6 in stress activated fibroblasts, we found a reduced myocardial capillarization in mice with Gata4/6 double deletion following pressure overload, while single deletion of Gata4 or Gata6 had no effect. Importantly, we confirmed the reduced angiogenic response using an in vitro co-culture system with Gata4/6 deleted cardiac fibroblasts and endothelial cells. A comprehensive RNA-sequencing analysis revealed an upregulation of anti-angiogenic genes upon Gata4/6 deletion in fibroblasts, and siRNA mediated downregulation of these genes restored endothelial cell growth. In conclusion, we identified a novel role for the cardiogenic transcription factors GATA-4 and GATA-6 in heart fibroblasts, where both proteins act in concert to promote myocardial capillarization and heart function by directing intercellular crosstalk. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00395-021-00862-y. |
format | Online Article Text |
id | pubmed-8055639 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-80556392021-05-05 Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis Dittrich, Gesine M. Froese, Natali Wang, Xue Kroeger, Hannah Wang, Honghui Szaroszyk, Malgorzata Malek-Mohammadi, Mona Cordero, Julio Keles, Merve Korf-Klingebiel, Mortimer Wollert, Kai C. Geffers, Robert Mayr, Manuel Conway, Simon J. Dobreva, Gergana Bauersachs, Johann Heineke, Joerg Basic Res Cardiol Original Contribution Heart failure due to high blood pressure or ischemic injury remains a major problem for millions of patients worldwide. Despite enormous advances in deciphering the molecular mechanisms underlying heart failure progression, the cell-type specific adaptations and especially intercellular signaling remain poorly understood. Cardiac fibroblasts express high levels of cardiogenic transcription factors such as GATA-4 and GATA-6, but their role in fibroblasts during stress is not known. Here, we show that fibroblast GATA-4 and GATA-6 promote adaptive remodeling in pressure overload induced cardiac hypertrophy. Using a mouse model with specific single or double deletion of Gata4 and Gata6 in stress activated fibroblasts, we found a reduced myocardial capillarization in mice with Gata4/6 double deletion following pressure overload, while single deletion of Gata4 or Gata6 had no effect. Importantly, we confirmed the reduced angiogenic response using an in vitro co-culture system with Gata4/6 deleted cardiac fibroblasts and endothelial cells. A comprehensive RNA-sequencing analysis revealed an upregulation of anti-angiogenic genes upon Gata4/6 deletion in fibroblasts, and siRNA mediated downregulation of these genes restored endothelial cell growth. In conclusion, we identified a novel role for the cardiogenic transcription factors GATA-4 and GATA-6 in heart fibroblasts, where both proteins act in concert to promote myocardial capillarization and heart function by directing intercellular crosstalk. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00395-021-00862-y. Springer Berlin Heidelberg 2021-04-19 2021 /pmc/articles/PMC8055639/ /pubmed/33876316 http://dx.doi.org/10.1007/s00395-021-00862-y Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Original Contribution Dittrich, Gesine M. Froese, Natali Wang, Xue Kroeger, Hannah Wang, Honghui Szaroszyk, Malgorzata Malek-Mohammadi, Mona Cordero, Julio Keles, Merve Korf-Klingebiel, Mortimer Wollert, Kai C. Geffers, Robert Mayr, Manuel Conway, Simon J. Dobreva, Gergana Bauersachs, Johann Heineke, Joerg Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis |
title | Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis |
title_full | Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis |
title_fullStr | Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis |
title_full_unstemmed | Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis |
title_short | Fibroblast GATA-4 and GATA-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis |
title_sort | fibroblast gata-4 and gata-6 promote myocardial adaptation to pressure overload by enhancing cardiac angiogenesis |
topic | Original Contribution |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055639/ https://www.ncbi.nlm.nih.gov/pubmed/33876316 http://dx.doi.org/10.1007/s00395-021-00862-y |
work_keys_str_mv | AT dittrichgesinem fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT froesenatali fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT wangxue fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT kroegerhannah fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT wanghonghui fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT szaroszykmalgorzata fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT malekmohammadimona fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT corderojulio fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT kelesmerve fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT korfklingebielmortimer fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT wollertkaic fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT geffersrobert fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT mayrmanuel fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT conwaysimonj fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT dobrevagergana fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT bauersachsjohann fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis AT heinekejoerg fibroblastgata4andgata6promotemyocardialadaptationtopressureoverloadbyenhancingcardiacangiogenesis |