Cargando…
Interpretable survival prediction for colorectal cancer using deep learning
Deriving interpretable prognostic features from deep-learning-based prognostic histopathology models remains a challenge. In this study, we developed a deep learning system (DLS) for predicting disease-specific survival for stage II and III colorectal cancer using 3652 cases (27,300 slides). When ev...
Autores principales: | Wulczyn, Ellery, Steiner, David F., Moran, Melissa, Plass, Markus, Reihs, Robert, Tan, Fraser, Flament-Auvigne, Isabelle, Brown, Trissia, Regitnig, Peter, Chen, Po-Hsuan Cameron, Hegde, Narayan, Sadhwani, Apaar, MacDonald, Robert, Ayalew, Benny, Corrado, Greg S., Peng, Lily H., Tse, Daniel, Müller, Heimo, Xu, Zhaoyang, Liu, Yun, Stumpe, Martin C., Zatloukal, Kurt, Mermel, Craig H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055695/ https://www.ncbi.nlm.nih.gov/pubmed/33875798 http://dx.doi.org/10.1038/s41746-021-00427-2 |
Ejemplares similares
-
Deep learning-based survival prediction for multiple cancer types using histopathology images
por: Wulczyn, Ellery, et al.
Publicado: (2020) -
Predicting prostate cancer specific-mortality with artificial intelligence-based Gleason grading
por: Wulczyn, Ellery, et al.
Publicado: (2021) -
Predicting lymph node metastasis from primary tumor histology and clinicopathologic factors in colorectal cancer using deep learning
por: Krogue, Justin D., et al.
Publicado: (2023) -
Comparative analysis of machine learning approaches to classify tumor mutation burden in lung adenocarcinoma using histopathology images
por: Sadhwani, Apaar, et al.
Publicado: (2021) -
Pathologist Validation of a Machine Learning–Derived Feature for Colon Cancer Risk Stratification
por: L’Imperio, Vincenzo, et al.
Publicado: (2023)