Cargando…
Combining whole-cell patch clamp and dye loading in acute brain slices with bulk RNA sequencing in embryonic to aged mice
Single-cell electrophysiological recordings combined with dye loading and immunohistochemistry provide unparalleled single-cell resolution of cell physiology, morphology, location, and protein expression. When correlated with bulk RNA sequencing, these data can define cell identity and function. Her...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055713/ https://www.ncbi.nlm.nih.gov/pubmed/33899020 http://dx.doi.org/10.1016/j.xpro.2021.100439 |
Sumario: | Single-cell electrophysiological recordings combined with dye loading and immunohistochemistry provide unparalleled single-cell resolution of cell physiology, morphology, location, and protein expression. When correlated with bulk RNA sequencing, these data can define cell identity and function. Here, we describe a protocol to prepare acute brain slices from embryonic and postnatal mice for whole-cell patch clamp, dye loading and post-hoc immunohistochemistry, and cell isolation for bulk RNA sequencing. While we focus on oligodendrocyte precursor cells, this protocol is applicable to other brain cells. For complete details on the use and execution of this protocol, please refer to Spitzer et al. (2019). |
---|