Cargando…
Fast and effective pseudo transfer entropy for bivariate data-driven causal inference
Identifying, from time series analysis, reliable indicators of causal relationships is essential for many disciplines. Main challenges are distinguishing correlation from causality and discriminating between direct and indirect interactions. Over the years many methods for data-driven causal inferen...
Autores principales: | Silini, Riccardo, Masoller, Cristina |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055902/ https://www.ncbi.nlm.nih.gov/pubmed/33875707 http://dx.doi.org/10.1038/s41598-021-87818-3 |
Ejemplares similares
-
A Bayesian Model for Bivariate Causal Inference
por: Kurthen, Maximilian, et al.
Publicado: (2019) -
Causal Inference in Time Series in Terms of Rényi Transfer Entropy
por: Jizba, Petr, et al.
Publicado: (2022) -
Inferring network properties from time series using transfer entropy and mutual information: Validation of multivariate versus bivariate approaches
por: Novelli, Leonardo, et al.
Publicado: (2021) -
Bivariate Causal Discovery and Its Applications to Gene Expression and Imaging Data Analysis
por: Jiao, Rong, et al.
Publicado: (2018) -
Matlab Open Source Code: Noise-Assisted Multivariate Empirical Mode Decomposition Based Causal Decomposition for Causality Inference of Bivariate Time Series
por: Zhang, Yi, et al.
Publicado: (2022)