Cargando…
Comparison of Artificial and Spiking Neural Networks on Digital Hardware
Despite the success of Deep Neural Networks—a type of Artificial Neural Network (ANN)—in problem domains such as image recognition and speech processing, the energy and processing demands during both training and deployment are growing at an unsustainable rate in the push for greater accuracy. There...
Autores principales: | Davidson, Simon, Furber, Steve B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8055931/ https://www.ncbi.nlm.nih.gov/pubmed/33889071 http://dx.doi.org/10.3389/fnins.2021.651141 |
Ejemplares similares
-
Large-Scale Simulations of Plastic Neural Networks on Neuromorphic Hardware
por: Knight, James C., et al.
Publicado: (2016) -
Quantization Framework for Fast Spiking Neural Networks
por: Li, Chen, et al.
Publicado: (2022) -
Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms
por: Stromatias, Evangelos, et al.
Publicado: (2015) -
Performance Comparison of the Digital Neuromorphic Hardware SpiNNaker and the Neural Network Simulation Software NEST for a Full-Scale Cortical Microcircuit Model
por: van Albada, Sacha J., et al.
Publicado: (2018) -
Probabilistic Spike Propagation for Efficient Hardware Implementation of Spiking Neural Networks
por: Nallathambi, Abinand, et al.
Publicado: (2021)