Cargando…

Generalized spatial coherence reconstruction for photoacoustic computed tomography

Significance: Coherence, a fundamental property of waves and fields, plays a key role in photoacoustic image reconstruction. Previously, techniques such as short-lag spatial coherence (SLSC) and filtered delay, multiply, and sum (FDMAS) have utilized spatial coherence to improve the reconstructed re...

Descripción completa

Detalles Bibliográficos
Autores principales: Tordera Mora, Jorge, Feng, Xiaohua, Nyayapathi, Nikhila, Xia, Jun, Gao, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056071/
https://www.ncbi.nlm.nih.gov/pubmed/33880892
http://dx.doi.org/10.1117/1.JBO.26.4.046002
Descripción
Sumario:Significance: Coherence, a fundamental property of waves and fields, plays a key role in photoacoustic image reconstruction. Previously, techniques such as short-lag spatial coherence (SLSC) and filtered delay, multiply, and sum (FDMAS) have utilized spatial coherence to improve the reconstructed resolution and contrast with respect to delay-and-sum (DAS). While SLSC uses spatial coherence directly as the imaging contrast, FDMAS employs spatial coherence implicitly. Despite being more robust against noise, both techniques have their own drawbacks: SLSC does not preserve a relative signal magnitude, and FDMAS shows a reduced contrast-to-noise ratio. Aim: To overcome these limitations, our aim is to develop a beamforming algorithm—generalized spatial coherence (GSC)—that unifies SLSC and FDMAS into a single equation and outperforms both beamformers. Approach: We demonstrated the application of GSC in photoacoustic computed tomography (PACT) through simulation and experiments and compared it to previous beamformers: DAS, FDMAS, and SLSC. Results: GSC outperforms the imaging metrics of previous state-of-the-art coherence-based beamformers in both simulation and experiments. Conclusions: GSC is an innovative reconstruction algorithm for PACT, which combines the strengths of FDMAS and SLSC expanding PACT’s applications.