Cargando…
Development of a Prognostic AI-Monitor for Metastatic Urothelial Cancer Patients Receiving Immunotherapy
Background: Immune checkpoint inhibitor efficacy in advanced cancer patients remains difficult to predict. Imaging is the only technique available that can non-invasively provide whole body information of a patient's response to treatment. We hypothesize that quantitative whole-body prognostic...
Autores principales: | Trebeschi, Stefano, Bodalal, Zuhir, van Dijk, Nick, Boellaard, Thierry N., Apfaltrer, Paul, Tareco Bucho, Teresa M., Nguyen-Kim, Thi Dan Linh, van der Heijden, Michiel S., Aerts, Hugo J. W. L., Beets-Tan, Regina G. H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056079/ https://www.ncbi.nlm.nih.gov/pubmed/33889546 http://dx.doi.org/10.3389/fonc.2021.637804 |
Ejemplares similares
-
Prognostic Value of Deep Learning-Mediated Treatment Monitoring in Lung Cancer Patients Receiving Immunotherapy
por: Trebeschi, Stefano, et al.
Publicado: (2021) -
Radiomics: a critical step towards integrated healthcare
por: Bodalal, Zuhir, et al.
Publicado: (2018) -
Artificial intelligence-based diagnosis of asbestosis: analysis of a database with applicants for asbestosis state aid
por: Groot Lipman, Kevin B. W., et al.
Publicado: (2022) -
Radiomics in immuno-oncology
por: Bodalal, Z., et al.
Publicado: (2021) -
Colorectal carcinoma then and now: What we are learning by comparing two Libyan cancer studies
por: Bodalal, Zuhir
Publicado: (2015)