Cargando…
Novel criteria to classify ARDS severity using a machine learning approach
BACKGROUND: Usually, arterial oxygenation in patients with the acute respiratory distress syndrome (ARDS) improves substantially by increasing the level of positive end-expiratory pressure (PEEP). Herein, we are proposing a novel variable [PaO(2)/(FiO(2)xPEEP) or P/FP(E)] for PEEP ≥ 5 to address Ber...
Autores principales: | Sayed, Mohammed, Riaño, David, Villar, Jesús |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056190/ https://www.ncbi.nlm.nih.gov/pubmed/33879214 http://dx.doi.org/10.1186/s13054-021-03566-w |
Ejemplares similares
-
Predicting Duration of Mechanical Ventilation in Acute Respiratory Distress Syndrome Using Supervised Machine Learning
por: Sayed, Mohammed, et al.
Publicado: (2021) -
Classifying kinase conformations using a machine learning approach
por: McSkimming, Daniel Ian, et al.
Publicado: (2017) -
Evaluating hierarchical machine learning approaches to classify biological databases
por: Rezende, Pâmela M, et al.
Publicado: (2022) -
I, DOCTOR: The role of machine learning in phenotyping ARDS
por: Levine, Andrea R., et al.
Publicado: (2021) -
A machine learning approach utilizing DNA methylation as an accurate classifier of COVID-19 disease severity
por: Bowler, Scott, et al.
Publicado: (2022)