Cargando…
Constructing and analysing dynamic models with modelbase v1.2.3: a software update
BACKGROUND: Computational mathematical models of biological and biomedical systems have been successfully applied to advance our understanding of various regulatory processes, metabolic fluxes, effects of drug therapies, and disease evolution and transmission. Unfortunately, despite community effort...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056244/ https://www.ncbi.nlm.nih.gov/pubmed/33879053 http://dx.doi.org/10.1186/s12859-021-04122-7 |
_version_ | 1783680612911022080 |
---|---|
author | van Aalst, Marvin Ebenhöh, Oliver Matuszyńska, Anna |
author_facet | van Aalst, Marvin Ebenhöh, Oliver Matuszyńska, Anna |
author_sort | van Aalst, Marvin |
collection | PubMed |
description | BACKGROUND: Computational mathematical models of biological and biomedical systems have been successfully applied to advance our understanding of various regulatory processes, metabolic fluxes, effects of drug therapies, and disease evolution and transmission. Unfortunately, despite community efforts leading to the development of SBML and the BioModels database, many published models have not been fully exploited, largely due to a lack of proper documentation or the dependence on proprietary software. To facilitate the reuse and further development of systems biology and systems medicine models, an open-source toolbox that makes the overall process of model construction more consistent, understandable, transparent, and reproducible is desired. RESULTS AND DISCUSSION: We provide an update on the development of modelbase, a free, expandable Python package for constructing and analysing ordinary differential equation-based mathematical models of dynamic systems. It provides intuitive and unified methods to construct and solve these systems. Significantly expanded visualisation methods allow for convenient analysis of the structural and dynamic properties of models. After specifying reaction stoichiometries and rate equations modelbase can automatically assemble the associated system of differential equations. A newly provided library of common kinetic rate laws reduces the repetitiveness of the computer programming code. modelbase is also fully compatible with SBML. Previous versions provided functions for the automatic construction of networks for isotope labelling studies. Now, using user-provided label maps, modelbase v1.2.3 streamlines the expansion of classic models to their isotope-specific versions. Finally, the library of previously published models implemented in modelbase is growing continuously. Ranging from photosynthesis to tumour cell growth to viral infection evolution, all these models are now available in a transparent, reusable and unified format through modelbase. CONCLUSION: With this new Python software package, which is written in currently one of the most popular programming languages, the user can develop new models and actively profit from the work of others. modelbase enables reproducing and replicating models in a consistent, tractable and expandable manner. Moreover, the expansion of models to their isotopic label-specific versions enables simulating label propagation, thus providing quantitative information regarding network topology and metabolic fluxes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-021-04122-7. |
format | Online Article Text |
id | pubmed-8056244 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-80562442021-04-20 Constructing and analysing dynamic models with modelbase v1.2.3: a software update van Aalst, Marvin Ebenhöh, Oliver Matuszyńska, Anna BMC Bioinformatics Software BACKGROUND: Computational mathematical models of biological and biomedical systems have been successfully applied to advance our understanding of various regulatory processes, metabolic fluxes, effects of drug therapies, and disease evolution and transmission. Unfortunately, despite community efforts leading to the development of SBML and the BioModels database, many published models have not been fully exploited, largely due to a lack of proper documentation or the dependence on proprietary software. To facilitate the reuse and further development of systems biology and systems medicine models, an open-source toolbox that makes the overall process of model construction more consistent, understandable, transparent, and reproducible is desired. RESULTS AND DISCUSSION: We provide an update on the development of modelbase, a free, expandable Python package for constructing and analysing ordinary differential equation-based mathematical models of dynamic systems. It provides intuitive and unified methods to construct and solve these systems. Significantly expanded visualisation methods allow for convenient analysis of the structural and dynamic properties of models. After specifying reaction stoichiometries and rate equations modelbase can automatically assemble the associated system of differential equations. A newly provided library of common kinetic rate laws reduces the repetitiveness of the computer programming code. modelbase is also fully compatible with SBML. Previous versions provided functions for the automatic construction of networks for isotope labelling studies. Now, using user-provided label maps, modelbase v1.2.3 streamlines the expansion of classic models to their isotope-specific versions. Finally, the library of previously published models implemented in modelbase is growing continuously. Ranging from photosynthesis to tumour cell growth to viral infection evolution, all these models are now available in a transparent, reusable and unified format through modelbase. CONCLUSION: With this new Python software package, which is written in currently one of the most popular programming languages, the user can develop new models and actively profit from the work of others. modelbase enables reproducing and replicating models in a consistent, tractable and expandable manner. Moreover, the expansion of models to their isotopic label-specific versions enables simulating label propagation, thus providing quantitative information regarding network topology and metabolic fluxes. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-021-04122-7. BioMed Central 2021-04-20 /pmc/articles/PMC8056244/ /pubmed/33879053 http://dx.doi.org/10.1186/s12859-021-04122-7 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Software van Aalst, Marvin Ebenhöh, Oliver Matuszyńska, Anna Constructing and analysing dynamic models with modelbase v1.2.3: a software update |
title | Constructing and analysing dynamic models with modelbase v1.2.3: a software update |
title_full | Constructing and analysing dynamic models with modelbase v1.2.3: a software update |
title_fullStr | Constructing and analysing dynamic models with modelbase v1.2.3: a software update |
title_full_unstemmed | Constructing and analysing dynamic models with modelbase v1.2.3: a software update |
title_short | Constructing and analysing dynamic models with modelbase v1.2.3: a software update |
title_sort | constructing and analysing dynamic models with modelbase v1.2.3: a software update |
topic | Software |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056244/ https://www.ncbi.nlm.nih.gov/pubmed/33879053 http://dx.doi.org/10.1186/s12859-021-04122-7 |
work_keys_str_mv | AT vanaalstmarvin constructingandanalysingdynamicmodelswithmodelbasev123asoftwareupdate AT ebenhoholiver constructingandanalysingdynamicmodelswithmodelbasev123asoftwareupdate AT matuszynskaanna constructingandanalysingdynamicmodelswithmodelbasev123asoftwareupdate |