Cargando…
Weight-Based Framework for Predictive Modeling of Multiple Databases With Noniterative Communication Without Data Sharing: Privacy-Protecting Analytic Method for Multi-Institutional Studies
BACKGROUND: Securing the representativeness of study populations is crucial in biomedical research to ensure high generalizability. In this regard, using multi-institutional data have advantages in medicine. However, combining data physically is difficult as the confidential nature of biomedical dat...
Autores principales: | Park, Ji Ae, Sung, Min Dong, Kim, Ho Heon, Park, Yu Rang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056295/ https://www.ncbi.nlm.nih.gov/pubmed/33818396 http://dx.doi.org/10.2196/21043 |
Ejemplares similares
-
Noniterative coordination in multilevel systems
por: Stoilov, Todor, et al.
Publicado: (1999) -
Noniterative Generalized Camera Model for Near-Central Camera System
por: Choi, Taehyeon, et al.
Publicado: (2023) -
Bayesian missing data problems: EM, data augmentation and noniterative computation
por: Tan, Ming T, et al.
Publicado: (2009) -
Noniterative Doubles Corrections to the Random Phase and Higher Random Phase Approximations: Singlet and Triplet Excitation Energies
por: Haase, Pi A. B., et al.
Publicado: (2019) -
Protecting Privacy of Shared Epidemiologic Data without Compromising Analysis Potential
por: Cologne, John, et al.
Publicado: (2012)