Cargando…
AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders
BACKGROUND: Drug–target interaction (DTI) plays a vital role in drug discovery. Identifying drug–target interactions related to wet-lab experiments are costly, laborious, and time-consuming. Therefore, computational methods to predict drug–target interactions are an essential task in the drug discov...
Autores principales: | Sajadi, Seyedeh Zahra, Zare Chahooki, Mohammad Ali, Gharaghani, Sajjad, Abbasi, Karim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056558/ https://www.ncbi.nlm.nih.gov/pubmed/33879050 http://dx.doi.org/10.1186/s12859-021-04127-2 |
Ejemplares similares
-
The ionic DTI model (iDTI) of dynamic diffusion tensor imaging (dDTI)
por: Makris, Nikos, et al.
Publicado: (2014) -
GADTI: Graph Autoencoder Approach for DTI Prediction From Heterogeneous Network
por: Liu, Zhixian, et al.
Publicado: (2021) -
DeepDTI: High-fidelity six-direction diffusion tensor imaging using deep learning
por: Tian, Qiyuan, et al.
Publicado: (2020) -
Increased Global and Local Efficiency of Human Brain Anatomical Networks Detected with FLAIR-DTI Compared to Non-FLAIR-DTI
por: Li, Shumei, et al.
Publicado: (2013) -
Specific DTI seeding and diffusivity-analysis improve the quality and prognostic value of TMS-based deterministic DTI of the pyramidal tract()()
por: Rosenstock, Tizian, et al.
Publicado: (2017)