Cargando…
Glucose-6-phosphate dehydrogenase mutations in malaria endemic area of Thailand by multiplexed high‐resolution melting curve analysis
BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymopathy in humans, is prevalent in tropical and subtropical areas where malaria is endemic. Anti-malarial drugs, such as primaquine and tafenoquine, can cause haemolysis in G6PD-deficient individuals. Hence, G6PD te...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056697/ https://www.ncbi.nlm.nih.gov/pubmed/33879156 http://dx.doi.org/10.1186/s12936-021-03731-0 |
_version_ | 1783680700206022656 |
---|---|
author | Boonyuen, Usa Songdej, Duantida Tanyaratsrisakul, Sasipa Phuanukoonnon, Suparat Chamchoy, Kamonwan Praoparotai, Aun Pakparnich, Phonchanan Sudsumrit, Sirapapha Edwards, Thomas Williams, Christopher T. Byrne, Rachel L. Adams, Emily R. Imwong, Mallika |
author_facet | Boonyuen, Usa Songdej, Duantida Tanyaratsrisakul, Sasipa Phuanukoonnon, Suparat Chamchoy, Kamonwan Praoparotai, Aun Pakparnich, Phonchanan Sudsumrit, Sirapapha Edwards, Thomas Williams, Christopher T. Byrne, Rachel L. Adams, Emily R. Imwong, Mallika |
author_sort | Boonyuen, Usa |
collection | PubMed |
description | BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymopathy in humans, is prevalent in tropical and subtropical areas where malaria is endemic. Anti-malarial drugs, such as primaquine and tafenoquine, can cause haemolysis in G6PD-deficient individuals. Hence, G6PD testing is recommended before radical treatment against vivax malaria. Phenotypic assays have been widely used for screening G6PD deficiency, but in heterozygous females, the random lyonization causes difficulty in interpreting the results. Over 200 G6PD variants have been identified, which form genotypes associated with differences in the degree of G6PD deficiency and vulnerability to haemolysis. This study aimed to assess the frequency of G6PD mutations using a newly developed molecular genotyping test. METHODS: A multiplexed high-resolution melting (HRM) assay was developed to detect eight G6PD mutations, in which four mutations can be tested simultaneously. Validation of the method was performed using 70 G6PD-deficient samples. The test was then applied to screen 725 blood samples from people living along the Thai–Myanmar border. The enzyme activity of these samples was also determined using water-soluble tetrazolium salts (WST-8) assay. Then, the correlation between genotype and enzyme activity was analysed. RESULTS: The sensitivity of the multiplexed HRM assay for detecting G6PD mutations was 100 % [95 % confidence interval (CI): 94.87–100 %] with specificity of 100 % (95 % CI: 87.66–100 %). The overall prevalence of G6PD deficiency in the studied population as revealed by phenotypic WST-8 assay was 20.55 % (149/725). In contrast, by the multiplexed HRM assay, 27.17 % (197/725) of subjects were shown to have G6PD mutations. The mutations detected in this study included four single variants, G6PD Mahidol (187/197), G6PD Canton (4/197), G6PD Viangchan (3/197) and G6PD Chinese-5 (1/197), and two double mutations, G6PD Mahidol + Canton (1/197) and G6PD Chinese-4 + Viangchan (1/197). A broad range of G6PD enzyme activities were observed in individuals carrying G6PD Mahidol, especially in females. CONCLUSIONS: The multiplexed HRM-based assay is sensitive and reliable for detecting G6PD mutations. This genotyping assay can facilitate the detection of heterozygotes, which could be useful as a supplementary approach for high-throughput screening of G6PD deficiency in malaria endemic areas before the administration of primaquine and tafenoquine. |
format | Online Article Text |
id | pubmed-8056697 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-80566972021-04-21 Glucose-6-phosphate dehydrogenase mutations in malaria endemic area of Thailand by multiplexed high‐resolution melting curve analysis Boonyuen, Usa Songdej, Duantida Tanyaratsrisakul, Sasipa Phuanukoonnon, Suparat Chamchoy, Kamonwan Praoparotai, Aun Pakparnich, Phonchanan Sudsumrit, Sirapapha Edwards, Thomas Williams, Christopher T. Byrne, Rachel L. Adams, Emily R. Imwong, Mallika Malar J Research BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) deficiency, the most common enzymopathy in humans, is prevalent in tropical and subtropical areas where malaria is endemic. Anti-malarial drugs, such as primaquine and tafenoquine, can cause haemolysis in G6PD-deficient individuals. Hence, G6PD testing is recommended before radical treatment against vivax malaria. Phenotypic assays have been widely used for screening G6PD deficiency, but in heterozygous females, the random lyonization causes difficulty in interpreting the results. Over 200 G6PD variants have been identified, which form genotypes associated with differences in the degree of G6PD deficiency and vulnerability to haemolysis. This study aimed to assess the frequency of G6PD mutations using a newly developed molecular genotyping test. METHODS: A multiplexed high-resolution melting (HRM) assay was developed to detect eight G6PD mutations, in which four mutations can be tested simultaneously. Validation of the method was performed using 70 G6PD-deficient samples. The test was then applied to screen 725 blood samples from people living along the Thai–Myanmar border. The enzyme activity of these samples was also determined using water-soluble tetrazolium salts (WST-8) assay. Then, the correlation between genotype and enzyme activity was analysed. RESULTS: The sensitivity of the multiplexed HRM assay for detecting G6PD mutations was 100 % [95 % confidence interval (CI): 94.87–100 %] with specificity of 100 % (95 % CI: 87.66–100 %). The overall prevalence of G6PD deficiency in the studied population as revealed by phenotypic WST-8 assay was 20.55 % (149/725). In contrast, by the multiplexed HRM assay, 27.17 % (197/725) of subjects were shown to have G6PD mutations. The mutations detected in this study included four single variants, G6PD Mahidol (187/197), G6PD Canton (4/197), G6PD Viangchan (3/197) and G6PD Chinese-5 (1/197), and two double mutations, G6PD Mahidol + Canton (1/197) and G6PD Chinese-4 + Viangchan (1/197). A broad range of G6PD enzyme activities were observed in individuals carrying G6PD Mahidol, especially in females. CONCLUSIONS: The multiplexed HRM-based assay is sensitive and reliable for detecting G6PD mutations. This genotyping assay can facilitate the detection of heterozygotes, which could be useful as a supplementary approach for high-throughput screening of G6PD deficiency in malaria endemic areas before the administration of primaquine and tafenoquine. BioMed Central 2021-04-20 /pmc/articles/PMC8056697/ /pubmed/33879156 http://dx.doi.org/10.1186/s12936-021-03731-0 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Boonyuen, Usa Songdej, Duantida Tanyaratsrisakul, Sasipa Phuanukoonnon, Suparat Chamchoy, Kamonwan Praoparotai, Aun Pakparnich, Phonchanan Sudsumrit, Sirapapha Edwards, Thomas Williams, Christopher T. Byrne, Rachel L. Adams, Emily R. Imwong, Mallika Glucose-6-phosphate dehydrogenase mutations in malaria endemic area of Thailand by multiplexed high‐resolution melting curve analysis |
title | Glucose-6-phosphate dehydrogenase mutations in malaria endemic area of Thailand by multiplexed high‐resolution melting curve analysis |
title_full | Glucose-6-phosphate dehydrogenase mutations in malaria endemic area of Thailand by multiplexed high‐resolution melting curve analysis |
title_fullStr | Glucose-6-phosphate dehydrogenase mutations in malaria endemic area of Thailand by multiplexed high‐resolution melting curve analysis |
title_full_unstemmed | Glucose-6-phosphate dehydrogenase mutations in malaria endemic area of Thailand by multiplexed high‐resolution melting curve analysis |
title_short | Glucose-6-phosphate dehydrogenase mutations in malaria endemic area of Thailand by multiplexed high‐resolution melting curve analysis |
title_sort | glucose-6-phosphate dehydrogenase mutations in malaria endemic area of thailand by multiplexed high‐resolution melting curve analysis |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056697/ https://www.ncbi.nlm.nih.gov/pubmed/33879156 http://dx.doi.org/10.1186/s12936-021-03731-0 |
work_keys_str_mv | AT boonyuenusa glucose6phosphatedehydrogenasemutationsinmalariaendemicareaofthailandbymultiplexedhighresolutionmeltingcurveanalysis AT songdejduantida glucose6phosphatedehydrogenasemutationsinmalariaendemicareaofthailandbymultiplexedhighresolutionmeltingcurveanalysis AT tanyaratsrisakulsasipa glucose6phosphatedehydrogenasemutationsinmalariaendemicareaofthailandbymultiplexedhighresolutionmeltingcurveanalysis AT phuanukoonnonsuparat glucose6phosphatedehydrogenasemutationsinmalariaendemicareaofthailandbymultiplexedhighresolutionmeltingcurveanalysis AT chamchoykamonwan glucose6phosphatedehydrogenasemutationsinmalariaendemicareaofthailandbymultiplexedhighresolutionmeltingcurveanalysis AT praoparotaiaun glucose6phosphatedehydrogenasemutationsinmalariaendemicareaofthailandbymultiplexedhighresolutionmeltingcurveanalysis AT pakparnichphonchanan glucose6phosphatedehydrogenasemutationsinmalariaendemicareaofthailandbymultiplexedhighresolutionmeltingcurveanalysis AT sudsumritsirapapha glucose6phosphatedehydrogenasemutationsinmalariaendemicareaofthailandbymultiplexedhighresolutionmeltingcurveanalysis AT edwardsthomas glucose6phosphatedehydrogenasemutationsinmalariaendemicareaofthailandbymultiplexedhighresolutionmeltingcurveanalysis AT williamschristophert glucose6phosphatedehydrogenasemutationsinmalariaendemicareaofthailandbymultiplexedhighresolutionmeltingcurveanalysis AT byrnerachell glucose6phosphatedehydrogenasemutationsinmalariaendemicareaofthailandbymultiplexedhighresolutionmeltingcurveanalysis AT adamsemilyr glucose6phosphatedehydrogenasemutationsinmalariaendemicareaofthailandbymultiplexedhighresolutionmeltingcurveanalysis AT imwongmallika glucose6phosphatedehydrogenasemutationsinmalariaendemicareaofthailandbymultiplexedhighresolutionmeltingcurveanalysis |