Cargando…
COVID TV-Unet: Segmenting COVID-19 chest CT images using connectivity imposed Unet
The novel corona-virus disease (COVID-19) pandemic has caused a major outbreak in more than 200 countries around the world, leading to a severe impact on the health and life of many people globally. By October 2020, more than 44 million people were infected, and more than 1,000,000 deaths were repor...
Autores principales: | Saeedizadeh, Narges, Minaee, Shervin, Kafieh, Rahele, Yazdani, Shakib, Sonka, Milan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8056883/ https://www.ncbi.nlm.nih.gov/pubmed/34337587 http://dx.doi.org/10.1016/j.cmpbup.2021.100007 |
Ejemplares similares
-
Deep-COVID: Predicting COVID-19 from chest X-ray images using deep transfer learning
por: Minaee, Shervin, et al.
Publicado: (2020) -
TDD-UNet:Transformer with double decoder UNet for COVID-19 lesions segmentation
por: Huang, Xuping, et al.
Publicado: (2022) -
MID-UNet: Multi-input directional UNet for COVID-19 lung infection segmentation from CT images
por: Chi, Jianning, et al.
Publicado: (2022) -
PDAtt-Unet: Pyramid Dual-Decoder Attention Unet for Covid-19 infection segmentation from CT-scans
por: Bougourzi, Fares, et al.
Publicado: (2023) -
A-DenseUNet: Adaptive Densely Connected UNet for Polyp Segmentation in Colonoscopy Images with Atrous Convolution
por: Safarov, Sirojbek, et al.
Publicado: (2021)