Cargando…
Using supervised machine learning classifiers to estimate likelihood of participating in clinical trials of a de-identified version of ResearchMatch
INTRODUCTION: Lack of participation in clinical trials (CTs) is a major barrier for the evaluation of new pharmaceuticals and devices. Here we report the results of the analysis of a dataset from ResearchMatch, an online clinical registry, using supervised machine learning approaches and a deep lear...
Autores principales: | Vazquez, Janette, Abdelrahman, Samir, Byrne, Loretta M., Russell, Michael, Harris, Paul, Facelli, Julio C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057403/ https://www.ncbi.nlm.nih.gov/pubmed/33948264 http://dx.doi.org/10.1017/cts.2020.535 |
Ejemplares similares
-
Opening doors to clinical trial participation among Hispanics: Lessons learned from the Spanish translation of ResearchMatch
por: Byrne, Loretta M., et al.
Publicado: (2020) -
ResearchMatch on FHIR: Development and evaluation of a recruitment registry and electronic health record system interface for volunteer profile completion
por: Cheng, Alex C., et al.
Publicado: (2023) -
Connecting the public with clinical trial options: The ResearchMatch Trials Today tool
por: Pulley, Jill M., et al.
Publicado: (2018) -
Conformal Prediction in Clinical Medical Sciences
por: Vazquez, Janette, et al.
Publicado: (2022) -
Classifying Circumnutation in Pea Plants via Supervised Machine Learning
por: Wang, Qiuran, et al.
Publicado: (2023)