Cargando…
Variable selection methods for identifying predictor interactions in data with repeatedly measured binary outcomes
INTRODUCTION: Identifying predictors of patient outcomes evaluated over time may require modeling interactions among variables while addressing within-subject correlation. Generalized linear mixed models (GLMMs) and generalized estimating equations (GEEs) address within-subject correlation, but iden...
Autores principales: | Wolf, Bethany J., Jiang, Yunyun, Wilson, Sylvia H., Oates, Jim C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057419/ https://www.ncbi.nlm.nih.gov/pubmed/33948279 http://dx.doi.org/10.1017/cts.2020.556 |
Ejemplares similares
-
Identifying Plant Pentatricopeptide Repeat Proteins Using a Variable Selection Method
por: Zhao, Xudong, et al.
Publicado: (2021) -
Harnessing repeated measurements of predictor variables for clinical risk prediction: a review of existing methods
por: Bull, Lucy M., et al.
Publicado: (2020) -
Prediction and Variable Selection in High-Dimensional Misspecified Binary Classification
por: Furmańczyk, Konrad, et al.
Publicado: (2020) -
Development of a lupus nephritis suboptimal response prediction tool using renal histopathological and clinical laboratory variables at the time of diagnosis
por: Helget, Lindsay N, et al.
Publicado: (2021) -
Repeatedly measured predictors: a comparison of methods for prediction modeling
por: Welten, Marieke, et al.
Publicado: (2018)