Cargando…
Comparison of regression imputation methods of baseline covariates that predict survival outcomes
INTRODUCTION: Missing data are inevitable in medical research and appropriate handling of missing data is critical for statistical estimation and making inferences. Imputation is often employed in order to maximize the amount of data available for statistical analysis and is preferred over the typic...
Autores principales: | Solomon, Nicole, Lokhnygina, Yuliya, Halabi, Susan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057424/ https://www.ncbi.nlm.nih.gov/pubmed/33948262 http://dx.doi.org/10.1017/cts.2020.533 |
Ejemplares similares
-
Logistic regression vs. predictive mean matching for imputing binary covariates
por: Austin, Peter C, et al.
Publicado: (2023) -
Multiple imputation in Cox regression when there are time‐varying effects of covariates
por: Keogh, Ruth H., et al.
Publicado: (2018) -
Population‐calibrated multiple imputation for a binary/categorical covariate in categorical regression models
por: Pham, Tra My, et al.
Publicado: (2018) -
Methods for significance testing of categorical covariates in logistic regression models after multiple imputation: power and applicability analysis
por: Eekhout, Iris, et al.
Publicado: (2017) -
Evaluation of machine learning methods for covariate data imputation in pharmacometrics
por: Bräm, Dominic Stefan, et al.
Publicado: (2022)