Cargando…

Integrating data science into the translational science research spectrum: A substance use disorder case study

The availability of large healthcare datasets offers the opportunity for researchers to navigate the traditional clinical and translational science research stages in a nonlinear manner. In particular, data scientists can harness the power of large healthcare datasets to bridge from preclinical disc...

Descripción completa

Detalles Bibliográficos
Autores principales: Slade, Emily, Dwoskin, Linda P., Zhang, Guo-Qiang, Talbert, Jeffery C., Chen, Jin, Freeman, Patricia R., Kantak, Kathleen M., Hankosky, Emily R., Fouladvand, Sajjad, Meadows, Amy L., Bush, Heather M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cambridge University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057445/
https://www.ncbi.nlm.nih.gov/pubmed/33948252
http://dx.doi.org/10.1017/cts.2020.521
_version_ 1783680837841059840
author Slade, Emily
Dwoskin, Linda P.
Zhang, Guo-Qiang
Talbert, Jeffery C.
Chen, Jin
Freeman, Patricia R.
Kantak, Kathleen M.
Hankosky, Emily R.
Fouladvand, Sajjad
Meadows, Amy L.
Bush, Heather M.
author_facet Slade, Emily
Dwoskin, Linda P.
Zhang, Guo-Qiang
Talbert, Jeffery C.
Chen, Jin
Freeman, Patricia R.
Kantak, Kathleen M.
Hankosky, Emily R.
Fouladvand, Sajjad
Meadows, Amy L.
Bush, Heather M.
author_sort Slade, Emily
collection PubMed
description The availability of large healthcare datasets offers the opportunity for researchers to navigate the traditional clinical and translational science research stages in a nonlinear manner. In particular, data scientists can harness the power of large healthcare datasets to bridge from preclinical discoveries (T0) directly to assessing population-level health impact (T4). A successful bridge from T0 to T4 does not bypass the other stages entirely; rather, effective team science makes a direct progression from T0 to T4 impactful by incorporating the perspectives of researchers from every stage of the clinical and translational science research spectrum. In this exemplar, we demonstrate how effective team science overcame challenges and, ultimately, ensured success when a diverse team of researchers worked together, using healthcare big data to test population-level substance use disorder (SUD) hypotheses generated from preclinical rodent studies. This project, called Advancing Substance use disorder Knowledge using Big Data (ASK Big Data), highlights the critical roles that data science expertise and effective team science play in quickly translating preclinical research into public health impact.
format Online
Article
Text
id pubmed-8057445
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Cambridge University Press
record_format MEDLINE/PubMed
spelling pubmed-80574452021-05-03 Integrating data science into the translational science research spectrum: A substance use disorder case study Slade, Emily Dwoskin, Linda P. Zhang, Guo-Qiang Talbert, Jeffery C. Chen, Jin Freeman, Patricia R. Kantak, Kathleen M. Hankosky, Emily R. Fouladvand, Sajjad Meadows, Amy L. Bush, Heather M. J Clin Transl Sci Special Communications The availability of large healthcare datasets offers the opportunity for researchers to navigate the traditional clinical and translational science research stages in a nonlinear manner. In particular, data scientists can harness the power of large healthcare datasets to bridge from preclinical discoveries (T0) directly to assessing population-level health impact (T4). A successful bridge from T0 to T4 does not bypass the other stages entirely; rather, effective team science makes a direct progression from T0 to T4 impactful by incorporating the perspectives of researchers from every stage of the clinical and translational science research spectrum. In this exemplar, we demonstrate how effective team science overcame challenges and, ultimately, ensured success when a diverse team of researchers worked together, using healthcare big data to test population-level substance use disorder (SUD) hypotheses generated from preclinical rodent studies. This project, called Advancing Substance use disorder Knowledge using Big Data (ASK Big Data), highlights the critical roles that data science expertise and effective team science play in quickly translating preclinical research into public health impact. Cambridge University Press 2020-08-19 /pmc/articles/PMC8057445/ /pubmed/33948252 http://dx.doi.org/10.1017/cts.2020.521 Text en © The Association for Clinical and Translational Science 2020 https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Special Communications
Slade, Emily
Dwoskin, Linda P.
Zhang, Guo-Qiang
Talbert, Jeffery C.
Chen, Jin
Freeman, Patricia R.
Kantak, Kathleen M.
Hankosky, Emily R.
Fouladvand, Sajjad
Meadows, Amy L.
Bush, Heather M.
Integrating data science into the translational science research spectrum: A substance use disorder case study
title Integrating data science into the translational science research spectrum: A substance use disorder case study
title_full Integrating data science into the translational science research spectrum: A substance use disorder case study
title_fullStr Integrating data science into the translational science research spectrum: A substance use disorder case study
title_full_unstemmed Integrating data science into the translational science research spectrum: A substance use disorder case study
title_short Integrating data science into the translational science research spectrum: A substance use disorder case study
title_sort integrating data science into the translational science research spectrum: a substance use disorder case study
topic Special Communications
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057445/
https://www.ncbi.nlm.nih.gov/pubmed/33948252
http://dx.doi.org/10.1017/cts.2020.521
work_keys_str_mv AT sladeemily integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy
AT dwoskinlindap integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy
AT zhangguoqiang integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy
AT talbertjefferyc integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy
AT chenjin integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy
AT freemanpatriciar integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy
AT kantakkathleenm integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy
AT hankoskyemilyr integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy
AT fouladvandsajjad integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy
AT meadowsamyl integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy
AT bushheatherm integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy