Cargando…
Integrating data science into the translational science research spectrum: A substance use disorder case study
The availability of large healthcare datasets offers the opportunity for researchers to navigate the traditional clinical and translational science research stages in a nonlinear manner. In particular, data scientists can harness the power of large healthcare datasets to bridge from preclinical disc...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cambridge University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057445/ https://www.ncbi.nlm.nih.gov/pubmed/33948252 http://dx.doi.org/10.1017/cts.2020.521 |
_version_ | 1783680837841059840 |
---|---|
author | Slade, Emily Dwoskin, Linda P. Zhang, Guo-Qiang Talbert, Jeffery C. Chen, Jin Freeman, Patricia R. Kantak, Kathleen M. Hankosky, Emily R. Fouladvand, Sajjad Meadows, Amy L. Bush, Heather M. |
author_facet | Slade, Emily Dwoskin, Linda P. Zhang, Guo-Qiang Talbert, Jeffery C. Chen, Jin Freeman, Patricia R. Kantak, Kathleen M. Hankosky, Emily R. Fouladvand, Sajjad Meadows, Amy L. Bush, Heather M. |
author_sort | Slade, Emily |
collection | PubMed |
description | The availability of large healthcare datasets offers the opportunity for researchers to navigate the traditional clinical and translational science research stages in a nonlinear manner. In particular, data scientists can harness the power of large healthcare datasets to bridge from preclinical discoveries (T0) directly to assessing population-level health impact (T4). A successful bridge from T0 to T4 does not bypass the other stages entirely; rather, effective team science makes a direct progression from T0 to T4 impactful by incorporating the perspectives of researchers from every stage of the clinical and translational science research spectrum. In this exemplar, we demonstrate how effective team science overcame challenges and, ultimately, ensured success when a diverse team of researchers worked together, using healthcare big data to test population-level substance use disorder (SUD) hypotheses generated from preclinical rodent studies. This project, called Advancing Substance use disorder Knowledge using Big Data (ASK Big Data), highlights the critical roles that data science expertise and effective team science play in quickly translating preclinical research into public health impact. |
format | Online Article Text |
id | pubmed-8057445 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Cambridge University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-80574452021-05-03 Integrating data science into the translational science research spectrum: A substance use disorder case study Slade, Emily Dwoskin, Linda P. Zhang, Guo-Qiang Talbert, Jeffery C. Chen, Jin Freeman, Patricia R. Kantak, Kathleen M. Hankosky, Emily R. Fouladvand, Sajjad Meadows, Amy L. Bush, Heather M. J Clin Transl Sci Special Communications The availability of large healthcare datasets offers the opportunity for researchers to navigate the traditional clinical and translational science research stages in a nonlinear manner. In particular, data scientists can harness the power of large healthcare datasets to bridge from preclinical discoveries (T0) directly to assessing population-level health impact (T4). A successful bridge from T0 to T4 does not bypass the other stages entirely; rather, effective team science makes a direct progression from T0 to T4 impactful by incorporating the perspectives of researchers from every stage of the clinical and translational science research spectrum. In this exemplar, we demonstrate how effective team science overcame challenges and, ultimately, ensured success when a diverse team of researchers worked together, using healthcare big data to test population-level substance use disorder (SUD) hypotheses generated from preclinical rodent studies. This project, called Advancing Substance use disorder Knowledge using Big Data (ASK Big Data), highlights the critical roles that data science expertise and effective team science play in quickly translating preclinical research into public health impact. Cambridge University Press 2020-08-19 /pmc/articles/PMC8057445/ /pubmed/33948252 http://dx.doi.org/10.1017/cts.2020.521 Text en © The Association for Clinical and Translational Science 2020 https://creativecommons.org/licenses/by/4.0/This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Special Communications Slade, Emily Dwoskin, Linda P. Zhang, Guo-Qiang Talbert, Jeffery C. Chen, Jin Freeman, Patricia R. Kantak, Kathleen M. Hankosky, Emily R. Fouladvand, Sajjad Meadows, Amy L. Bush, Heather M. Integrating data science into the translational science research spectrum: A substance use disorder case study |
title | Integrating data science into the translational science research spectrum: A substance use disorder case study |
title_full | Integrating data science into the translational science research spectrum: A substance use disorder case study |
title_fullStr | Integrating data science into the translational science research spectrum: A substance use disorder case study |
title_full_unstemmed | Integrating data science into the translational science research spectrum: A substance use disorder case study |
title_short | Integrating data science into the translational science research spectrum: A substance use disorder case study |
title_sort | integrating data science into the translational science research spectrum: a substance use disorder case study |
topic | Special Communications |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057445/ https://www.ncbi.nlm.nih.gov/pubmed/33948252 http://dx.doi.org/10.1017/cts.2020.521 |
work_keys_str_mv | AT sladeemily integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy AT dwoskinlindap integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy AT zhangguoqiang integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy AT talbertjefferyc integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy AT chenjin integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy AT freemanpatriciar integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy AT kantakkathleenm integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy AT hankoskyemilyr integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy AT fouladvandsajjad integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy AT meadowsamyl integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy AT bushheatherm integratingdatascienceintothetranslationalscienceresearchspectrumasubstanceusedisordercasestudy |