Cargando…
Bayesian Markov models improve the prediction of binding motifs beyond first order
Transcription factors (TFs) regulate gene expression by binding to specific DNA motifs. Accurate models for predicting binding affinities are crucial for quantitatively understanding of transcriptional regulation. Motifs are commonly described by position weight matrices, which assume that each posi...
Autores principales: | Ge, Wanwan, Meier, Markus, Roth, Christian, Söding, Johannes |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057495/ https://www.ncbi.nlm.nih.gov/pubmed/33928244 http://dx.doi.org/10.1093/nargab/lqab026 |
Ejemplares similares
-
Alternative splicing analysis benchmark with DICAST
por: Fenn, Amit, et al.
Publicado: (2023) -
A comparison on predicting functional impact of genomic variants
por: Wang, Dong, et al.
Publicado: (2022) -
Benchmarking computational methods for B-cell receptor reconstruction from single-cell RNA-seq data
por: Andreani, Tommaso, et al.
Publicado: (2022) -
Benchmarking single-cell hashtag oligo demultiplexing methods
por: Howitt, George, et al.
Publicado: (2023) -
A Computer-Vision-Guided Robot Arm for Automatically Placing Grids in Pioloform Film Preparation
por: Peurla, Markus, et al.
Publicado: (2019)