Cargando…
Leveraging expression from multiple tissues using sparse canonical correlation analysis and aggregate tests improves the power of transcriptome-wide association studies
Transcriptome-wide association studies (TWAS) test the association between traits and genetically predicted gene expression levels. The power of a TWAS depends in part on the strength of the correlation between a genetic predictor of gene expression and the causally relevant gene expression values....
Autores principales: | Feng, Helian, Mancuso, Nicholas, Gusev, Alexander, Majumdar, Arunabha, Major, Megan, Pasaniuc, Bogdan, Kraft, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057593/ https://www.ncbi.nlm.nih.gov/pubmed/33831007 http://dx.doi.org/10.1371/journal.pgen.1008973 |
Ejemplares similares
-
Leveraging local ancestry to detect gene-gene interactions in genome-wide data
por: Aschard, Hugues, et al.
Publicado: (2015) -
twas_sim, a Python-based tool for simulation and power analysis of transcriptome-wide association analysis
por: Wang, Xinran, et al.
Publicado: (2023) -
Leveraging eQTLs to identify individual-level tissue of interest for a complex trait
por: Majumdar, Arunabha, et al.
Publicado: (2021) -
Accurate estimation of SNP-heritability from biobank-scale data irrespective of genetic architecture
por: Hou, Kangcheng, et al.
Publicado: (2019) -
Large-scale transcriptome-wide association study identifies new prostate cancer risk regions
por: Mancuso, Nicholas, et al.
Publicado: (2018)