Cargando…

Route selection in non-Euclidean virtual environments

The way people choose routes through unfamiliar environments provides clues about the underlying representation they use. One way to test the nature of observers’ representation is to manipulate the structure of the scene as they move through it and measure which aspects of performance are significa...

Descripción completa

Detalles Bibliográficos
Autores principales: Muryy, Alexander, Glennerster, Andrew
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057603/
https://www.ncbi.nlm.nih.gov/pubmed/33878109
http://dx.doi.org/10.1371/journal.pone.0247818
Descripción
Sumario:The way people choose routes through unfamiliar environments provides clues about the underlying representation they use. One way to test the nature of observers’ representation is to manipulate the structure of the scene as they move through it and measure which aspects of performance are significantly affected and which are not. We recorded the routes that participants took in virtual mazes to reach previously-viewed targets. The mazes were either physically realizable or impossible (the latter contained ‘wormholes’ that altered the layout of the scene without any visible change at that moment). We found that participants could usually find the shortest route between remembered objects even in physically impossible environments, despite the gross failures in pointing that an earlier study showed are evident in the physically impossible environment. In the physically impossible conditions, the choice made at a junction was influenced to a greater extent by whether that choice had, in the past, led to the discovery of a target (compared to a shortest-distance prediction). In the physically realizable mazes, on the other hand, junction choices were determined more by the shortest distance to the target. This pattern of results is compatible with the idea of a graph-like representation of space that can include information about previous success or failure for traversing each edge and also information about the distance between nodes. Our results suggest that complexity of the maze may dictate which of these is more important in influencing navigational choices.