Cargando…

Rosuvastatin Enhances Alveolar Fluid Clearance in Lipopolysaccharide-Induced Acute Lung Injury by Activating the Expression of Sodium Channel and Na,K-ATPase via the PI3K/AKT/Nedd4-2 Pathway

BACKGROUND: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are devastating clinical conditions characterized by pulmonary epithelial damage and protein-rich fluid accumulation in the alveolar spaces. Statins are a class of HMG-CoA reductase inhibitors, which exert cholesterol...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Hao-Ran, Yang, Qian, Xiang, Shu-Yang, Zhang, Pu-Hong, Ye, Yang, Chen, Yan, Xu, Ke-Wen, Ren, Xi-Ya, Mei, Hong-Xia, Shen, Chen-Xi, Ma, Hong-Yu, Smith, Fang-Gao, Jin, Sheng-Wei, Wang, Qian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057837/
https://www.ncbi.nlm.nih.gov/pubmed/33889010
http://dx.doi.org/10.2147/JIR.S299267
Descripción
Sumario:BACKGROUND: Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are devastating clinical conditions characterized by pulmonary epithelial damage and protein-rich fluid accumulation in the alveolar spaces. Statins are a class of HMG-CoA reductase inhibitors, which exert cholesterol-lowering and anti-inflammatory effects. METHODS: Rosuvastatin (1 mg/kg) was injected intravenously in rats 12 h before lipopolysaccharide (LPS, 10 mg/kg) administration. Eight hours later after LPS challenge, alveolar fluid clearance (AFC) was detected in rats (n = 6–8). Rosuvastatin (0.3 µmol/mL) and LPS were cultured with primary rat alveolar type II epithelial cells for 8 h. RESULTS: Rosuvastatin obviously improved AFC and attenuated lung-tissue damage in ALI model. Moreover, it enhanced AFC by increasing sodium channel and Na,K-ATPase protein expression. It also up-regulated P-Akt via reducing Nedd4-2 in vivo and in vitro. Furthermore, LY294002 blocked the increase in AFC in response to rosuvastatin. Rosuvastatin-induced AFC was found to be partly rely on sodium channel and Na,K-ATPase expression via the PI3K/AKT/Nedd4-2 pathway. CONCLUSION: In summary, the findings of our study revealed the potential role of rosuvastatin in the management of ALI/ARDS.