Cargando…
AI inspired EEG-based spatial feature selection method using multivariate empirical mode decomposition for emotion classification
Classification of human emotions based on electroencephalography (EEG) is a very popular topic nowadays in the provision of human health care and well-being. Fast and effective emotion recognition can play an important role in understanding a patient’s emotions and in monitoring stress levels in rea...
Autores principales: | Asghar, Muhammad Adeel, Khan, Muhammad Jamil, Rizwan, Muhammad, Shorfuzzaman, Mohammad, Mehmood, Raja Majid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8057947/ https://www.ncbi.nlm.nih.gov/pubmed/33897112 http://dx.doi.org/10.1007/s00530-021-00782-w |
Ejemplares similares
-
An AI-empowered affect recognition model for healthcare and emotional well-being using physiological signals
por: Zhou, Zijian, et al.
Publicado: (2022) -
An Innovative Multi-Model Neural Network Approach for Feature Selection in Emotion Recognition Using Deep Feature Clustering
por: Asghar, Muhammad Adeel, et al.
Publicado: (2020) -
Low-Density EEG for Neural Activity Reconstruction Using Multivariate Empirical Mode Decomposition
por: Soler, Andres, et al.
Publicado: (2020) -
Data driven filtering of bowel sounds using multivariate empirical mode decomposition
por: Kölle, Konstanze, et al.
Publicado: (2019) -
Multi-Scale Pixel-Based Image Fusion Using Multivariate Empirical Mode Decomposition
por: Rehman, Naveed ur, et al.
Publicado: (2015)