Cargando…
Development and evaluation of radiotherapy deep learning dose prediction models for breast cancer
BACKGROUND AND PURPOSE: Treatment planning of radiotherapy is a time-consuming and planner dependent process that can be automated by dose prediction models. The purpose of this study was to evaluate the performance of two machine learning models for breast cancer radiotherapy before possible clinic...
Autores principales: | Bakx, Nienke, Bluemink, Hanneke, Hagelaar, Els, van der Sangen, Maurice, Theuws, Jacqueline, Hurkmans, Coen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058017/ https://www.ncbi.nlm.nih.gov/pubmed/33898781 http://dx.doi.org/10.1016/j.phro.2021.01.006 |
Ejemplares similares
-
Comparison of the output of a deep learning segmentation model for locoregional breast cancer radiotherapy trained on 2 different datasets
por: Bakx, Nienke, et al.
Publicado: (2023) -
Reduction of heart and lung normal tissue complication probability using automatic beam angle optimization and more generic optimization objectives for breast radiotherapy
por: Bakx, Nienke, et al.
Publicado: (2021) -
Evaluation of a clinically introduced deep learning model for radiotherapy treatment planning of breast cancer
por: Bakx, Nienke, et al.
Publicado: (2023) -
Artificial intelligence based treatment planning of radiotherapy for locally advanced breast cancer
por: van de Sande, Dennis, et al.
Publicado: (2021) -
Clinical evaluation of two AI models for automated breast cancer plan generation
por: Kneepkens, Esther, et al.
Publicado: (2022)