Cargando…

Experimental evaluation of four-dimensional Magnetic Resonance Imaging for radiotherapy planning of lung cancer

Radiotherapy planning for lung cancer typically requires both 3D and 4D Computed Tomography (CT) to account for respiratory related movement. 4D Magnetic Resonance Imaging (MRI) with self-navigation offers a potential alternative with greater reliability in patients with irregular breathing patterns...

Descripción completa

Detalles Bibliográficos
Autores principales: Perkins, Terry, Lee, Danny, Simpson, John, Greer, Peter, Goodwin, Jonathan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058028/
https://www.ncbi.nlm.nih.gov/pubmed/33898775
http://dx.doi.org/10.1016/j.phro.2020.12.006
Descripción
Sumario:Radiotherapy planning for lung cancer typically requires both 3D and 4D Computed Tomography (CT) to account for respiratory related movement. 4D Magnetic Resonance Imaging (MRI) with self-navigation offers a potential alternative with greater reliability in patients with irregular breathing patterns and improved soft tissue contrast. In this study 4D-CT and a 4D-MRI Radial Volumetric Interpolated Breath-hold Examination (VIBE) sequence was evaluated with a 4D phantom and 13 patient respiratory patterns, simulating tumour motion. Quantification of motion related tumour displacement in 4D-MRI and 4D-CT found no statistically significant difference in mean motion range. The results demonstrated the potential viability of 4D-MRI for lung cancer treatment planning.