Cargando…

A practical implementation of risk management for the clinical introduction of online adaptive Magnetic Resonance-guided radiotherapy

BACKGROUND AND PURPOSE: The clinical introduction of on-table adaptive radiotherapy with Magnetic Resonance (MR)-guided linear accelerators (Linacs) yields new challenges and potential risks. Since the adapted plan is created within a highly interdisciplinary workflow with the patient in treatment p...

Descripción completa

Detalles Bibliográficos
Autores principales: Klüter, Sebastian, Schrenk, Oliver, Renkamp, Claudia Katharina, Gliessmann, Stefan, Kress, Melanie, Debus, Jürgen, Hörner-Rieber, Juliane
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058032/
https://www.ncbi.nlm.nih.gov/pubmed/33898779
http://dx.doi.org/10.1016/j.phro.2020.12.005
Descripción
Sumario:BACKGROUND AND PURPOSE: The clinical introduction of on-table adaptive radiotherapy with Magnetic Resonance (MR)-guided linear accelerators (Linacs) yields new challenges and potential risks. Since the adapted plan is created within a highly interdisciplinary workflow with the patient in treatment position, time pressure or erroneous communication may lead to various possibly hazardous situations. To identify risks and implement a safe workflow, a proactive risk analysis has been conducted. MATERIALS AND METHODS: A process failure mode, effects and criticality analysis (P-FMECA) was performed within a group of radiation therapy technologists, physicians and physicists together with an external moderator. The workflow for on-table adaptive MR-guided treatments was defined and for each step potentially hazardous situations were identified. The risks were evaluated within the team in order to homogenize risk assessment. The team elaborated and discussed possible mitigation strategies and carried out their implementation. RESULTS: In total, 89 risks were identified for the entire MR-guided online adaptive workflow. After mitigation, all risks could be minimized to an acceptable level. Overall, the need for a standardized workflow, clear-defined protocols together with the need for checklists to ensure protocol adherence were identified among the most important mitigation measures. Moreover, additional quality assurance processes and automated plan checks were developed. CONCLUSIONS: Despite additional workload and beyond the fulfilment of legal requirements, execution of the P-FMECA within an interdisciplinary team helped all involved occupational groups to develop and foster an open culture of safety and to ensure a consensus for an efficient and safe online adaptive radiotherapy workflow.