Cargando…

Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial Community Structure

Microorganisms residing on root surfaces play a central role in plant development and performance and may promote growth in agricultural settings. Studies have started to uncover the environmental parameters and host interactions governing their assembly. However, soil microbial communities are extr...

Descripción completa

Detalles Bibliográficos
Autores principales: Klasek, Scott A., Brock, Marcus T., Morrison, Hilary G., Weinig, Cynthia, Maignien, Loïs
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058099/
https://www.ncbi.nlm.nih.gov/pubmed/33897658
http://dx.doi.org/10.3389/fmicb.2021.645784
_version_ 1783680963955392512
author Klasek, Scott A.
Brock, Marcus T.
Morrison, Hilary G.
Weinig, Cynthia
Maignien, Loïs
author_facet Klasek, Scott A.
Brock, Marcus T.
Morrison, Hilary G.
Weinig, Cynthia
Maignien, Loïs
author_sort Klasek, Scott A.
collection PubMed
description Microorganisms residing on root surfaces play a central role in plant development and performance and may promote growth in agricultural settings. Studies have started to uncover the environmental parameters and host interactions governing their assembly. However, soil microbial communities are extremely diverse and heterogeneous, showing strong variations over short spatial scales. Here, we quantify the relative effect of meter-scale variation in soil bacterial community composition among adjacent field microsites, to better understand how microbial communities vary by host plant genotype as well as soil microsite heterogeneity. We used bacterial 16S rDNA amplicon sequencing to compare rhizosphere communities from four Brassica rapa cultivars grown in three contiguous field plots (blocks) and evaluated the relative contribution of resident soil communities and host genotypes in determining rhizosphere community structure. We characterize concomitant meter-scale variation in bacterial community structure among soils and rhizospheres and show that this block-scale variability surpasses the influence of host genotype in shaping rhizosphere communities. We identified biomarker amplicon sequence variants (ASVs) associated with bulk soil and rhizosphere habitats, each block, and three of four cultivars. Numbers and percent abundances of block-specific biomarkers in rhizosphere communities far surpassed those from bulk soils. These results highlight the importance of fine-scale variation in the pool of colonizing microorganisms during rhizosphere assembly and demonstrate that microsite variation may constitute a confounding effect while testing biotic and abiotic factors governing rhizosphere community structure.
format Online
Article
Text
id pubmed-8058099
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-80580992021-04-22 Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial Community Structure Klasek, Scott A. Brock, Marcus T. Morrison, Hilary G. Weinig, Cynthia Maignien, Loïs Front Microbiol Microbiology Microorganisms residing on root surfaces play a central role in plant development and performance and may promote growth in agricultural settings. Studies have started to uncover the environmental parameters and host interactions governing their assembly. However, soil microbial communities are extremely diverse and heterogeneous, showing strong variations over short spatial scales. Here, we quantify the relative effect of meter-scale variation in soil bacterial community composition among adjacent field microsites, to better understand how microbial communities vary by host plant genotype as well as soil microsite heterogeneity. We used bacterial 16S rDNA amplicon sequencing to compare rhizosphere communities from four Brassica rapa cultivars grown in three contiguous field plots (blocks) and evaluated the relative contribution of resident soil communities and host genotypes in determining rhizosphere community structure. We characterize concomitant meter-scale variation in bacterial community structure among soils and rhizospheres and show that this block-scale variability surpasses the influence of host genotype in shaping rhizosphere communities. We identified biomarker amplicon sequence variants (ASVs) associated with bulk soil and rhizosphere habitats, each block, and three of four cultivars. Numbers and percent abundances of block-specific biomarkers in rhizosphere communities far surpassed those from bulk soils. These results highlight the importance of fine-scale variation in the pool of colonizing microorganisms during rhizosphere assembly and demonstrate that microsite variation may constitute a confounding effect while testing biotic and abiotic factors governing rhizosphere community structure. Frontiers Media S.A. 2021-04-07 /pmc/articles/PMC8058099/ /pubmed/33897658 http://dx.doi.org/10.3389/fmicb.2021.645784 Text en Copyright © 2021 Klasek, Brock, Morrison, Weinig and Maignien. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Klasek, Scott A.
Brock, Marcus T.
Morrison, Hilary G.
Weinig, Cynthia
Maignien, Loïs
Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial Community Structure
title Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial Community Structure
title_full Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial Community Structure
title_fullStr Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial Community Structure
title_full_unstemmed Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial Community Structure
title_short Soil Microsite Outweighs Cultivar Genotype Contribution to Brassica Rhizobacterial Community Structure
title_sort soil microsite outweighs cultivar genotype contribution to brassica rhizobacterial community structure
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058099/
https://www.ncbi.nlm.nih.gov/pubmed/33897658
http://dx.doi.org/10.3389/fmicb.2021.645784
work_keys_str_mv AT klasekscotta soilmicrositeoutweighscultivargenotypecontributiontobrassicarhizobacterialcommunitystructure
AT brockmarcust soilmicrositeoutweighscultivargenotypecontributiontobrassicarhizobacterialcommunitystructure
AT morrisonhilaryg soilmicrositeoutweighscultivargenotypecontributiontobrassicarhizobacterialcommunitystructure
AT weinigcynthia soilmicrositeoutweighscultivargenotypecontributiontobrassicarhizobacterialcommunitystructure
AT maignienlois soilmicrositeoutweighscultivargenotypecontributiontobrassicarhizobacterialcommunitystructure