Cargando…
A comparison of feature extraction methods for prediction of neuropsychological scores from functional connectivity data of stroke patients
Multivariate prediction of human behavior from resting state data is gaining increasing popularity in the neuroimaging community, with far-reaching translational implications in neurology and psychiatry. However, the high dimensionality of neuroimaging data increases the risk of overfitting, calling...
Autores principales: | Calesella, Federico, Testolin, Alberto, De Filippo De Grazia, Michele, Zorzi, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058135/ https://www.ncbi.nlm.nih.gov/pubmed/33877469 http://dx.doi.org/10.1186/s40708-021-00129-1 |
Ejemplares similares
-
The Role of Architectural and Learning Constraints in Neural Network Models: A Case Study on Visual Space Coding
por: Testolin, Alberto, et al.
Publicado: (2017) -
Deep Unsupervised Learning on a Desktop PC: A Primer for Cognitive Scientists
por: Testolin, Alberto, et al.
Publicado: (2013) -
A Comparison of Shallow and Deep Learning Methods for Predicting Cognitive Performance of Stroke Patients From MRI Lesion Images
por: Chauhan, Sucheta, et al.
Publicado: (2019) -
An emergentist perspective on the origin of number sense
por: Zorzi, Marco, et al.
Publicado: (2018) -
Probabilistic Models and Generative Neural Networks: Towards an Unified Framework for Modeling Normal and Impaired Neurocognitive Functions
por: Testolin, Alberto, et al.
Publicado: (2016)