Cargando…
Adaptive Filtering for Improved EEG-Based Mental Workload Assessment of Ambulant Users
Recently, due to the emergence of mobile electroencephalography (EEG) devices, assessment of mental workload in highly ecological settings has gained popularity. In such settings, however, motion and other common artifacts have been shown to severely hamper signal quality and to degrade mental workl...
Autores principales: | Rosanne, Olivier, Albuquerque, Isabela, Cassani, Raymundo, Gagnon, Jean-François, Tremblay, Sebastien, Falk, Tiago H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058356/ https://www.ncbi.nlm.nih.gov/pubmed/33897342 http://dx.doi.org/10.3389/fnins.2021.611962 |
Ejemplares similares
-
Multi-Scale Heart Beat Entropy Measures for Mental Workload Assessment of Ambulant Users
por: Tiwari, Abhishek, et al.
Publicado: (2019) -
WAUC: A Multi-Modal Database for Mental Workload Assessment Under Physical Activity
por: Albuquerque, Isabela, et al.
Publicado: (2020) -
Estimating distribution shifts for predicting cross-subject generalization in electroencephalography-based mental workload assessment
por: Albuquerque, Isabela, et al.
Publicado: (2022) -
PASS: A Multimodal Database of Physical Activity and Stress for Mobile Passive Body/ Brain-Computer Interface Research
por: Parent, Mark, et al.
Publicado: (2020) -
Using CNN Saliency Maps and EEG Modulation Spectra for Improved and More Interpretable Machine Learning-Based Alzheimer's Disease Diagnosis
por: Lopes, Marilia, et al.
Publicado: (2023)