Cargando…

DysRegSig: an R package for identifying gene dysregulations and building mechanistic signatures in cancer

SUMMARY: Dysfunctional regulations of gene expression programs relevant to fundamental cell processes can drive carcinogenesis. Therefore, systematically identifying dysregulation events is an effective path for understanding carcinogenesis and provides insightful clues to build predictive signature...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Quanxue, Dai, Wentao, Liu, Jixiang, Sang, Qingqing, Li, Yi-Xue, Li, Yuan-Yuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058765/
https://www.ncbi.nlm.nih.gov/pubmed/32717036
http://dx.doi.org/10.1093/bioinformatics/btaa688
Descripción
Sumario:SUMMARY: Dysfunctional regulations of gene expression programs relevant to fundamental cell processes can drive carcinogenesis. Therefore, systematically identifying dysregulation events is an effective path for understanding carcinogenesis and provides insightful clues to build predictive signatures with mechanistic interpretability for cancer precision medicine. Here, we implemented a machine learning-based gene dysregulation analysis framework in an R package, DysRegSig, which is capable of exploring gene dysregulations from high-dimensional data and building mechanistic signature based on gene dysregulations. DysRegSig can serve as an easy-to-use tool to facilitate gene dysregulation analysis and follow-up analysis. AVAILABILITY AND IMPLEMENTATION: The source code and user’s guide of DysRegSig are freely available at Github: https://github.com/SCBIT-YYLab/DysRegSig. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.