Cargando…
DysRegSig: an R package for identifying gene dysregulations and building mechanistic signatures in cancer
SUMMARY: Dysfunctional regulations of gene expression programs relevant to fundamental cell processes can drive carcinogenesis. Therefore, systematically identifying dysregulation events is an effective path for understanding carcinogenesis and provides insightful clues to build predictive signature...
Autores principales: | Li, Quanxue, Dai, Wentao, Liu, Jixiang, Sang, Qingqing, Li, Yi-Xue, Li, Yuan-Yuan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058765/ https://www.ncbi.nlm.nih.gov/pubmed/32717036 http://dx.doi.org/10.1093/bioinformatics/btaa688 |
Ejemplares similares
-
Gene dysregulation analysis builds a mechanistic signature for prognosis and therapeutic benefit in colorectal cancer
por: Li, Quanxue, et al.
Publicado: (2020) -
TGPred: a tumor gene prediction webserver for analyzing structural and functional impacts of variants
por: Liu, Jixiang, et al.
Publicado: (2020) -
Systematical Analysis of the Cancer Genome Atlas Database Reveals EMCN/MUC15 Combination as a Prognostic Signature for Gastric Cancer
por: Dai, Wentao, et al.
Publicado: (2020) -
The DynaSig-ML Python package: automated learning of biomolecular dynamics–function relationships
por: Mailhot, Olivier, et al.
Publicado: (2023) -
MetaMutationalSigs: comparison of mutational signature refitting results made easy
por: Pandey, Palash, et al.
Publicado: (2022)