Cargando…
A semi-supervised learning framework for quantitative structure–activity regression modelling
MOTIVATION: Quantitative structure–activity relationship (QSAR) methods are increasingly used in assisting the process of preclinical, small molecule drug discovery. Regression models are trained on data consisting of a finite-dimensional representation of molecular structures and their correspondin...
Autores principales: | Watson, Oliver, Cortes-Ciriano, Isidro, Watson, James A |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058768/ https://www.ncbi.nlm.nih.gov/pubmed/32777821 http://dx.doi.org/10.1093/bioinformatics/btaa711 |
Ejemplares similares
-
A decision-theoretic approach to the evaluation of machine learning algorithms in computational drug discovery
por: Watson, Oliver P, et al.
Publicado: (2019) -
A novel logistic regression model combining semi-supervised learning and active learning for disease classification
por: Chai, Hua, et al.
Publicado: (2018) -
Learning to propagate labels on graphs: An iterative multitask regression framework for semi-supervised hyperspectral dimensionality reduction
por: Hong, Danfeng, et al.
Publicado: (2019) -
AI-Assisted Cotton Grading: Active and Semi-Supervised Learning to Reduce the Image-Labelling Burden
por: Fisher, Oliver J., et al.
Publicado: (2023) -
A semi-supervised machine learning framework for microRNA classification
por: Sheikh Hassani, Mohsen, et al.
Publicado: (2019)