Cargando…
GraphQA: protein model quality assessment using graph convolutional networks
MOTIVATION: Proteins are ubiquitous molecules whose function in biological processes is determined by their 3D structure. Experimental identification of a protein’s structure can be time-consuming, prohibitively expensive and not always possible. Alternatively, protein folding can be modeled using c...
Autores principales: | Baldassarre, Federico, Menéndez Hurtado, David, Elofsson, Arne, Azizpour, Hossein |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058777/ https://www.ncbi.nlm.nih.gov/pubmed/32780838 http://dx.doi.org/10.1093/bioinformatics/btaa714 |
Ejemplares similares
-
SGCN: A Graph Sparsifier Based on Graph Convolutional Networks
por: Li, Jiayu, et al.
Publicado: (2020) -
Knowledge Graph Entity Alignment with Graph Convolutional Networks: Lessons Learned
por: Berrendorf, Max, et al.
Publicado: (2020) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
AFTGAN: prediction of multi-type PPI based on attention free transformer and graph attention network
por: Kang, Yanlei, et al.
Publicado: (2023) -
Geometric graphs from data to aid classification tasks with Graph Convolutional Networks
por: Qian, Yifan, et al.
Publicado: (2021)