Cargando…

Epitranscriptomic profile of Lactobacillus agilis and its adaptation to growth on inulin

OBJECTIVE: Ribonucleic acids (RNA) are involved in many cellular functions. In general, RNA is made up by only four different ribonucleotides. The modifications of RNA (epitranscriptome) can greatly enhance the structural diversity of RNA, which in turn support some of the RNA functions. To determin...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Hongzhou, Simpson, Jennifer H., Kotra, Madison E., Zhu, Yuanting, Wickramasinghe, Saumya, Mills, David A., Chiu, Norman H. L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8058956/
https://www.ncbi.nlm.nih.gov/pubmed/33883017
http://dx.doi.org/10.1186/s13104-021-05563-2
Descripción
Sumario:OBJECTIVE: Ribonucleic acids (RNA) are involved in many cellular functions. In general, RNA is made up by only four different ribonucleotides. The modifications of RNA (epitranscriptome) can greatly enhance the structural diversity of RNA, which in turn support some of the RNA functions. To determine whether the epitranscriptome of a specific probiotic is associated with its adaptation to the source of energy, Lactobacillus agilis (YZ050) was selected as a model and its epitranscriptome was profiled and compared by using mass spectrometry. RESULTS: The L. agilis epitranscriptome (minus rRNA modifications) consists of 17 different RNA modifications. By capturing the L. agilis cells during exponential growth, reproducible profiling was achieved. In a comparative study, the standard source of energy (glucose) in the medium was substituted by a prebiotic inulin, and a downward trend in the L. agilis epitranscriptome was detected. This marks the first report on a system-wide variation of a bacterial epitranscriptome that resulted from adapting to an alternative energy source. No correlation was found between the down-regulated RNA modifications and the expression level of corresponding writer genes. Whereas, the expression level of a specific exonuclease gene, RNase J1, was detected to be higher in cells grown on inulin.