Cargando…
Generative adversarial networks for imputing missing data for big data clinical research
BACKGROUND: Missing data is a pervasive problem in clinical research. Generative adversarial imputation nets (GAIN), a novel machine learning data imputation approach, has the potential to substitute missing data accurately and efficiently but has not yet been evaluated in empirical big clinical dat...
Autores principales: | Dong, Weinan, Fong, Daniel Yee Tak, Yoon, Jin-sun, Wan, Eric Yuk Fai, Bedford, Laura Elizabeth, Tang, Eric Ho Man, Lam, Cindy Lo Kuen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059005/ https://www.ncbi.nlm.nih.gov/pubmed/33879090 http://dx.doi.org/10.1186/s12874-021-01272-3 |
Ejemplares similares
-
Association of Blood Pressure and Risk of Cardiovascular and Chronic Kidney Disease in Hong Kong Hypertensive Patients
por: Wan, Eric Yuk Fai, et al.
Publicado: (2019) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Classification Rule for 5-year Cardiovascular Diseases Risk using decision tree in Primary Care Chinese Patients with Type 2 Diabetes Mellitus
por: Wan, Eric Yuk Fai, et al.
Publicado: (2017) -
Prediction of new onset of end stage renal disease in Chinese patients with type 2 diabetes mellitus – a population-based retrospective cohort study
por: Wan, Eric Yuk Fai, et al.
Publicado: (2017)