Cargando…
Overexpression of CRABP2 inhibits dexamethasone-induced apoptosis in human osteoblast cells
BACKGROUND: The purpose of the current study was to explore the role and underlying mechanism of cellular retinoic acid binding protein 2 (CRABP2) in dexamethasone (DEX)-induced apoptosis in human osteoblast cells. METHODS: GSE10311 was downloaded from the Gene Expression Omnibus (GEO) database to i...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059161/ https://www.ncbi.nlm.nih.gov/pubmed/33879199 http://dx.doi.org/10.1186/s13018-021-02386-6 |
Sumario: | BACKGROUND: The purpose of the current study was to explore the role and underlying mechanism of cellular retinoic acid binding protein 2 (CRABP2) in dexamethasone (DEX)-induced apoptosis in human osteoblast cells. METHODS: GSE10311 was downloaded from the Gene Expression Omnibus (GEO) database to identify the differentially expressed genes (DEGs) by the limma/R package. Primary human osteoblast was isolated and treated with different concentration of DEX (0, 10(-8), 10(-7), 10(-6), 10(-5), and 10(-4) mol/L), and cell viability and flow cytometry were used to detect cell proliferation and apoptosis. A CRABP2 overexpression plasmid (oe-CRABP2) was used to overexpress CRABP2, and western blotting was conducted to detect protein expression. RESULTS: We found that CRABP2 was downregulated in the DEX-treated group. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses indicated that DEGs were associated with PI3K/Akt signaling pathway. DEX downregulated CRABP2 gene and protein expression, inhibited viability, and induced human osteoblast apoptosis. Overexpression of CRABP2 reversed DEX-induced apoptosis in human osteoblast. Moreover, overexpression of CRABP2 delayed the progression of DEX-induced osteonecrosis of the femoral head (ONFH) animal model. CONCLUSION: In conclusion, CRABP2 is effective at inhibiting DEX-induced human osteoblast apoptosis and delayed ONFH progression. |
---|