Cargando…
Bleeding risk stratification in coronary artery surgery: the should-not-bleed score
BACKGROUND: An estimated 20% of allogeneic blood transfusions in the United States are associated with cardiac surgery. It is estimated that 11% of red cell resources were used for transfusion support of patients undergoing coronary artery bypass grafting (CABG) with a documented wide variability in...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8059187/ https://www.ncbi.nlm.nih.gov/pubmed/33882969 http://dx.doi.org/10.1186/s13019-021-01473-3 |
Sumario: | BACKGROUND: An estimated 20% of allogeneic blood transfusions in the United States are associated with cardiac surgery. It is estimated that 11% of red cell resources were used for transfusion support of patients undergoing coronary artery bypass grafting (CABG) with a documented wide variability in transfusion rate (7.8 to 92.8%). To address the issue of unnecessary transfusions within the CABG population, we developed a model to predict which patients are at low risk of bleeding for whom transfusion treatment might be considered unnecessary. Herein we present our “SHOULD-NOT-BLEED-SCORE” application developed for the Windows® software platform which is based on our previous research. METHODS: This study is aimed to develop a user-friendly application that stratifies patients with respect to bleeding risk. The statistical model we used in our previous research was focused on detection of CABG patients at low risk of bleeding. The rationale behind such an approach was to identify a CABG patient subgroup at low risk of bleeding. By identifying patients at low risk of bleeding we can define a subgroup of patients for whom transfusion treatment might be considered unnecessary. We developed a Windows platform application based on risk modelling which we previously calculated for 1426 patients undergoing elective CABG from January 2010 to January 2018. RESULTS: The SHOULD-NOT-BLEED-SCORE risk score is developed for the Windows software platform. A mathematical model that is based on multivariate analysis was used for app development. The variables that entered the scoring system were: Age; Body Mass Index; Chronic Renal Failure; Preoperative Clopidogrel Exposure; Preoperative Red Blood Cells Count; Preoperative Fibrinogen Level; Preoperative Multiplate ASPI test area under the curve (AUC) units. The SHOULD-NOT-BLEED-SCORE identifies/predicts patients without a risk for excessive bleeding with strong discriminatory performance (Receiver Operating Curve (ROC) analysis AUC 72.3%, p < 0.001). CONCLUSION: The SHOULD-NOT-BLEED risk scoring application may be useful in the preoperative risk screening process. The clinical and economic burden associated with unnecessary transfusions may be adequately addressed by a preoperative scoring system detecting patients at low risk of bleeding for whom transfusion treatment might be considered unnecessary. |
---|